Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-16T14:06:08.715Z Has data issue: false hasContentIssue false

Adhesion of Polysilicon Microbeams in Controlled Humidity Ambients

Published online by Cambridge University Press:  10 February 2011

M. P. de Boer
Affiliation:
Dept. 1325, Intelligent Micromachining, Sandia National Laboratories, Albuquerque, NM 87185, mpdebo@sandia.gov, www.mdl.sandia.gov/Micromachine
P. J. Clews
Affiliation:
Dept. 1324, Silicon Processing, Sandia National Laboratories, Albuquerque, NM 87185
B. K. Smith
Affiliation:
Dept. 1324, Silicon Processing, Sandia National Laboratories, Albuquerque, NM 87185
T. A. Michalske
Affiliation:
Dept. 1114, Surface and Interface Science, Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

We characterize in-situ the adhesion of surface micromachined polysilicon beams subject to controlled humidity ambients. Beams were freed by supercritical CO2drying. Consistent adhesion results were obtained using a post-treatment in an oxygen plasma which rendered the microbeams uniformly hydrophilic. Individual beam deformations were measured by optical interferometry after equilibration at a given relative humidity (RH). Validation of each adhesion measurement was accomplished by comparing the deformations with elasticity theory. The data indicates that adhesion increases exponentially with RH from 30% to 95%, with values from 1 mJ/m2 to 50 mJ/m2. Using the Kelvin equation, we show that the data should be independent of RH if a smooth interface is considered. By modeling a rough interface consistent with atomic force microscopy (AFM) data, the exponential trend is satisfactorily explained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mastrangelo, C. H. and Hsu, C. H., Proc. IEEE Solid-State Sensor & Actuator Workshop (Hilton Head), 208 (1992).Google Scholar
2 Mastrangelo, C. H. and Hsu, C. H., J. MEMS 2 (1), 33 (1993).Google Scholar
3 Mastrangelo, C. H. and Hsu, C. H., J. MEMS 2 (1), 44 (1993).Google Scholar
4 Boer, M. P. de and Michalske, T. A., Mater. Res. Soc. Proc. 444, (1997).Google Scholar
5 Boer, M. P. de and Michalske, T. A., J. Appl. Phys., (to be submitted).Google Scholar
6 Alley, R. L., Cuan, G. J., Howe, R. T. and Komvopoulos, K., Proc. IEEE Solid-State Sensor & Actuator Workshop (Hilton Head), 202 (1992).Google Scholar
7 Deng, K., Collins, R. J., Mehregany, M. and Sukenik, C. N., J. Electrochem. Soc. 142 (4), 1278 (1995).Google Scholar
8 Gogoi, B. P. and Mastrangelo, C. H., J. MEMS 4 (4), 185 (1995).Google Scholar
9 Alley, R. L., Mai, P., Komvopoulos, K. and Howe, R. T., Proc. Int. Conf. Solid-State Sensors & Actuators (Transducers '93), 288 (1993).Google Scholar
10 Houston, M. R., Maboudian, R. and Howe, R. T., Proc. IEEE Solid-State Sensor & Actuator Workshop (Hilton Head), 42 (1996).Google Scholar
11 Mastrangelo, C. H. and Saloka, G. S., Proc. IEEE MEMS (Ft. Lauderdale), 77 (1993).Google Scholar
12 Srinivasan, U., Houston, M. R., Howe, R. T. and Maboudian, R., Proc. Int. Conf. Solid-State Sensors & Actuators (Transducers '97) 2, 1399 (1997).Google Scholar
13 Yee, Y., Chun, K. and Lee, J. D., Proc. Int. Conf. Solid-State Sensors & Actuators (Transducers '95), 206 (1995).Google Scholar
14 Mulhern, G. T., Soane, D. S. and Howe, R. T., Proc. Int. Conf. Solid-State Sensors & Actuators (Transducers '93), 296 (1993).Google Scholar
15 Russick, E. M., Adkins, C. L. J. and Dyck, C. W., in Supercritical Fluids, Extraction and Pollution Prevention, Abraham, M. A. and Sunol, A. K., ed. (American Chemical Society, Washington, DC, 1997), vol. 670, pp. 255269.Google Scholar
16 Houston, M. R., Howe, R. T. and Maboudian, R., J. Appl. Phys. 81 (8), 3474 (1997).Google Scholar
17 Ewalds, H. L. and Wanhill, R. J. H., Fracture Mechanics, 8284 (Edward Arnold and Delftse Uitgevers Maatschapij, London, 1991).Google Scholar
18 Garcia, E. and Sniegowski, J., Sensors and Actuators A 48, 203 (1995).Google Scholar
19 LabVIEW, National Instruments, Austin, TX, 78730, http://www.natinst.com/.Google Scholar
20 Analysis performed on using the public domain NIH image program, available from the NIH Image Web site (http://rsb.info.nih.gov/nih-image/).Google Scholar
21 Naono, H., Fujiwara, R. and Yagi, M., J. Colloid Interface Sci. 76 (1), 74 (1980).Google Scholar
22 Adamson, A. W., Physical Chemistry of Surfaces, (John Wiley & Sons, New York, 1990).Google Scholar
23 Michalske, T. A. and Fuller, E. R., J. Am. Ceram. Soc. 68 (11), 586 (1985).Google Scholar
24 Israelachvili, J., Intermolecular and Surface Forces, (Academic Press, New York, 1992).Google Scholar
25 Greenwood, J. A. and Williamson, J. B. P., Proc. Roy. Soc. Lond. A. 295, 300 (1966).Google Scholar
26 Tian, X.F., and Bhushan, B., J. Phys. D. Appl. Phys 29 (1), 163 (1996).Google Scholar