Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-21T04:43:24.053Z Has data issue: false hasContentIssue false

Activation of N-Acceptor in MOCVD-ZnSe by Excimer Laser Annealing

Published online by Cambridge University Press:  25 February 2011

Nallan Padmapani
Affiliation:
Henry Krumb School of Mines, Columbia University, New York, NY 10027
G. F. Neumark
Affiliation:
Henry Krumb School of Mines, Columbia University, New York, NY 10027
N. Taskar
Affiliation:
Philips Laboratories, Briarcliff Manor, NY
D. Dorman
Affiliation:
Philips Laboratories, Briarcliff Manor, NY
Get access

Abstract

The recent success in obtaining blue-green diode lasers using ZnSe-based heterostructures has been mainly due to the successful p-doping of ZnSe using a N plasma source in an MBE system. P-type ZnSe can also be grown by MOCVD, using NH3 as the dopant source. Dopant concentrations of up to 1018 cm−3 have been obtained but net acceptor concentrations are in the range of only about 1015 cm−3 Activation of the remaining N has been achieved to some extent (NA -ND∼3*1016cm−3 ) by rapid thermal annealing. However, this has had limited success. We have used fast surface annealing by an excimer laser to activate the N. We have observed an increase in the ratio of Acceptor Bound Exciton peak intensity to Free Exciton peak intensity on annealing and this effect increases as we increase the laser power density from 10 to 30 MW/cm2. Electrical measurements ( C-V ) give a net acceptor concentration of ∼2*1016 cm−3 and thus confirm the increase in carrier concentration after annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Park, R.M., Troffer, M.B., Rouleau, C.M., DePuydt, J.M. and Haase, M.A., Appl. Phys. Lett., 57(20), 2127(1990).Google Scholar
2) Haase, M.A., Qiu, J., DePuydt, J.M. and Cheng, H., Appl. Phys. Lett., 59(11), 1272 (1991).Google Scholar
3) Jeon, H., Ding, J., Patterson, W., Nurmikko, A.V., Xie, W., Grillo, D.C., Kobayashi, M. and Gunshor, R.L., Appl. Phys. Lett., 59(27), 3619 (1991).Google Scholar
4) Taskar, N., Khan, Babar, Dorman, D. and Shahzad, K., (to be published in App. Phys. Lett.)Google Scholar
5) Khan, B., Taskar, N., Dorman, D., and Shahzad, K., MRS. Proc, Vol. 222, (1991).Google Scholar
6) Skromme, B.J., Stoffel, N.G., Gozdz, A.S., Tamargo, M.C. and Shibli, S.M., Mat. Res. Soc. Symp. Proc, Vol. 144, 371 (1989).Google Scholar
7) Bloembergen, N., AIP Conf. Proc. No. 50, 1 (1979).Google Scholar
8) Padmapani, N., Yi, G.-J., Neumark, G.F., Lu, Z., Chang, C.C. and Tamargo, M.C., Mat. Res. Soc. Symp. Proc. Vol. 242, 255 (1992).Google Scholar
9) Young, R.T. and Wood, R.F., Ann. Rev. Mater. Sci., 12:323–50 (1982).Google Scholar
10) Young, R.T., Mat. Res. Soc. Symp. Proc., Vol. 23, 217 (1984).Google Scholar
11) Wood, R.F., Lowndes, D.H. and Christie, W.H., Mat. Res Soc. Symp. Proc., Vol. 1, 231 (1981).Google Scholar
12) Fumisato, , Sunada, T. and Chikawa, Jun-ichi, Mat. Res. Soc. Symp. Proc., Vol. 23, 645 (1984).Google Scholar
13) Feenstra, R.M., Parsons, R.R., Shepherd, F.R., Westwood, W.D. and Ingrey, S.J., J. Appl. Phys., 50(9), 5624 (1979).Google Scholar
14) Uzan, C., Legros, R. and Marfaing, Y., J. Cryst. Growth, 72, 252 (1985).Google Scholar
15) Bokhonov, A.F., Tvoronovich, L.N. and Yablonskii, G.P., Sov. Phys. Solid State, 30(6), 917 (1988).Google Scholar
16) Donnelly, V.M., Baronavski, A.P., McDonald, J.R., Chem. Phys., 43, 271 (1979).Google Scholar
17) Marshall, T. and Cammack, D.A., J. Appl. Phys., 69, 4149 (1991).Google Scholar