Skip to main content Accessibility help
×
Home

Acoustic Properties of Organic/Inorganic Composite Aerogels

  • Winny Dong (a1), Tanya Faltens (a2), Michael Pantell (a3), Diana Simon (a4), Travis Thompson (a5) and Wayland Dong (a6)...

Abstract

Composite aerogels (with varying concentrations of silica and poly-dimethylsiloxane) were developed and their acoustic absorption coefficient as a function of composition and average pores size have been measured. The polydimethylsiloxane modified the ceramic structure of the silica aerogels, decreasing the material’s rigidity while maintaining the high porosity of the aerogel structure. The composite aerogels were found to exhibit different modes of acoustic absorption than that of typical porous absorbers such as fiberglass. At some frequencies, the composite aerogels had 40% higher absorption than that of commercial fiberglass. Physical data show that these materials have a large surface area (> 400 m2/g) and varying pore sizes (d ˜ 5 - 20 nm).

Copyright

References

Hide All
1 Forest, L., Gibiat, V., and Hooley, A., Impedance matching and acoustic absorption in granular layers of silica aerogels. Journal of Non-Crystalline Solids, 2001. 285: p. 230235.10.1016/S0022-3093(01)00458-6
2 Mackenzie, J., Huang, Q., and Iwamoto, T., Mechanical properties of ormosils. Journal of Sol-Gel Science and Technology, 1996. 7: p. 151161.10.1007/BF00401034
3 Allard, J., Propagation of sound in porous media. 1 ed. 1993: Springer.10.1007/978-94-011-1866-8
4 Caponi, S., et al., Acoustic attenuation in silica porous systems. Journal of Non-Crystalline Solids, 2003. 322: p. 2934.10.1016/S0022-3093(03)00167-4
5 Lee, Y., Sun, H., and Guo, X., Effects of the panel and helmholtz resonances on a micro-perforated absorber. Int. J. of Appl. Math and Mech., 2005. 4: p. 4954.
6 Allard, J., et al., Inhomogeneous Biot waves in layered media. Journal of Applied Physics, 1989. 66: p. 22782286.10.1063/1.344284
7 Sakamoto, S., Hikari, M., and Hideki, T., Numerical study on sound absorption characteristics of resonance-type brick/block walls. J. Acoust. Soc. Jpn. (E), 2000. 21: p.915.10.1250/ast.21.9

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed