Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-20T19:02:50.688Z Has data issue: false hasContentIssue false

Achieving Improved Solar Absorbance of Small Organic Dyes Featuring Quinoidized Five-Membered Heterocycles

Published online by Cambridge University Press:  28 July 2014

Wei Han Tu
Affiliation:
Anderson Junior College, 4500 Ang Mo Kio Avenue 6, Singapore 569843, Singapore
Yi Yin Tan
Affiliation:
Raffles Institution, 1 Raffles Institution Lane, Singapore 575954, Singapore.
Sergei Manzhos*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117576, Singapore
Get access

Abstract

We present rational computational design of phenothiazine dyes for dye-sensitized solar cells containing different five-membered rings (thiophene, furan, and selenophene) by a combined strategy of modified conjugation order and functionalization leading to the quinoidization of the ring. We predict that it is possible to lower the excitation energy by 20% vs. the parent dye by the combination of: change in the conjugation order of the methine unit, its functionalization by the CN group, and replacement of the thiophene ring by furan.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson, H., Chem. Rev. 110, 6595 (2010).10.1021/cr900356pCrossRefGoogle Scholar
Manzhos, S., Segawa, H., and Yamashita, K., Chem. Phys. Lett. 527, 51 (2012).10.1016/j.cplett.2011.12.079CrossRefGoogle Scholar
Manzhos, S., Nakazaki, J., Segawa, H., and Yamashita, K., Proc. SPIE 8435, 84351K (2012).10.1117/12.921135CrossRefGoogle Scholar
Manzhos, S., Komatsu, M., Nakazaki, J., Segawa, H., and Yamashita, K., Proc. SPIE 8109, 810908 (2011).10.1117/12.893262CrossRefGoogle Scholar
Manzhos, S., MRS Commun. 3, 37 (2013).10.1557/mrc.2012.34CrossRefGoogle Scholar
Tan, Y. Y., Tu, W. H., and Manzhos, S., Chem. Phys. Lett. 593, 14 (2014).10.1016/j.cplett.2013.12.078CrossRefGoogle Scholar
Wu, W., Yang, J., Hua, J., Tang, J., Zhang, L., Long, Y., and Tian, H., J. Mater. Chem. 20, 1772 (2010).10.1039/b918282aCrossRefGoogle Scholar
Koops, S. E., O’Regan, B. C., Barnes, P. R. F., and Durrant, J., J. Am. Chem. Soc. 131, 4808 (2009).10.1021/ja8091278CrossRefGoogle Scholar
Li, R., Lv, X., Shi, D., Zhou, D., Cheng, Y., Zhang, G., and Wang, P., J. Phys. Chem. C 113, 7469 (2009).10.1021/jp900972vCrossRefGoogle Scholar
Chakravarthi, N., Kranthiraja, K., Song, M., Gunasekar, K., Jeong, P., Moon, S.-J., Shin, W. S., Kang, I. N., Lee, J. W., and Jin, S.-H., Solar Energy Mater. Solar Cells, 122, 136 (2014).10.1016/j.solmat.2013.11.019CrossRefGoogle Scholar
Kohn, W. and Sham, L. J., Phys. Rev. 40, A1133 (1965).10.1103/PhysRev.140.A1133CrossRefGoogle Scholar
Marques, M. A. L. and Gross, E. K. U., Annu. Rev. Phys. Chem. 55, 427 (2004).10.1146/annurev.physchem.55.091602.094449CrossRefGoogle Scholar
Yanai, T., Tew, D., and Handy, N., Chem. Phys. Lett. 393, 51 (2004).10.1016/j.cplett.2004.06.011CrossRefGoogle Scholar
Jacquemin, D., Wathelet, V., Perpete, E. A., and Adamo, C., J. Chem. Theory Comput. 5, 2420 (2009).10.1021/ct900298eCrossRefGoogle Scholar
Frisch, M. J. et al. .,Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.Google Scholar
Zhang, S., Yang, X., Numata, Y., and Han, L., Energy Environ. Sci. 6, 1443 (2013).10.1039/c3ee24453aCrossRefGoogle Scholar
Ding, W. L., Wang, D. M., Geng, Z. Y., Zhao, X. L., and Yan, Y. F., J. Phys. Chem. C 117, 17382 (2013).10.1021/jp402645hCrossRefGoogle Scholar
Wang, M., Grätzel, C., Zakeeruddin, S. M., and Grätzel, M., Energy Environ. Sci. 5, 9394 (2012).10.1039/c2ee23081jCrossRefGoogle Scholar
Cong, J., Yang, X., Kloo, L., and Sun, L., Energy Environ. Sci. 5, 9180 (2012) 9180.10.1039/c2ee22095dCrossRefGoogle Scholar
Agrawal, S., Pastore, M., Marotta, G., Reddy, M. A., Chandrasekharam, M., and De Angelis, F., J. Phys. Chem. C 117, 9613 (2013).10.1021/jp4026305CrossRefGoogle Scholar
Hua, Y., Chang, S., Wang, H., Huang, D., Zhao, J., Chen, T., Wong, W. Y., Wong, W. K., and Zhu, X., J. Power Sources 243, 253 (2013).10.1016/j.jpowsour.2013.05.157CrossRefGoogle Scholar
Tuan, H., Yang, X., Chen, R., Pan, Y., Li, L., Hagfeldt, A., and Sun, L., Chem. Commun. 3741 (2007).Google Scholar
Hua, Y., Chang, S., Huang, D., Zhou, X., Zhu, X., Zhao, J., Chen, T., Wong, W. W., and Wong, W. K., Chem. Mater. 25, 2146 (2013).10.1021/cm400800hCrossRefGoogle Scholar
Koops, S. E., O’Regan, B. C., Barnes, P. R. F., and Durrant, J., J. Am. Chem. Soc. 131, 4808 (2009).10.1021/ja8091278CrossRefGoogle Scholar
Manzhos, S. and Giorgi, G., Challenges 4, 116 (2013).10.3390/challe4010116CrossRefGoogle Scholar