Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T17:34:38.118Z Has data issue: false hasContentIssue false

Achievement of More than 10% Efficiency for a Single-Junction 100cm2 a-Si Solar Cell and Development of a New-Type Module Structure

Published online by Cambridge University Press:  25 February 2011

Yoshihiro Hishikawa
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd. 1–18–13 Hashiridani, Hirakata, Osaka 573, Japan
Michitoshe Ohnishi
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd. 1–18–13 Hashiridani, Hirakata, Osaka 573, Japan
Yukinori Kuwano
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd. 1–18–13 Hashiridani, Hirakata, Osaka 573, Japan
Get access

Abstract

A total area conversion efficiency of 10.2% has been achieved for a 1Ocm×1Ocm integrated-type single-junction amorphous silicon (a-Si) solar cell submodule. It is the highest conversion efficiency ever reported for an a-Si solar cell with an area of 100cm2, including multi-junction cells. The effective area conversion efficiency is as high as 11.3%. The high efficiency is obtained by improving the quality of the i-layer and the p/i buffer layer, as well as by utilizing a highly textured, high-quality transparent electrode. The quality of the i-layer plays a dominant role in the performance of a-Si solar cells, especially in high efficiency cells. Techniques that control the properties of the high-quality a-Si films for the i-layer are described. Electric conductivity, ESR spin density and the Raman spectra of high-quality a-Si:H films are investigated as well as their thickness-dependence and substrate-dependence.

A Through-Hole Contact (THC) integrated-type submodule has been developed as a new-type a-Si solar cell module structure. Numerical simulations on the output power of the structure show that the output power can be significantly improved by the THC structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kuwano, Y. and Ohnishi, M., in Proceedings of the 3rd.E.C. Photovoltaic Solar Energy Conference, Cannes, 309 (1980)Google Scholar
2. Propeties of amorphous silicon (INSPEC, London, 1989)Google Scholar
3. Semiconductors and semimetals Vol.21A∼C, edited by Pankove, J. (Academic Press, 1984)Google Scholar
4. Glow-discharge hydrogenated amorphous silicon, edited by Tanaka, K. (KTK Science Publishers, Tokyo, 1989)Google Scholar
5. Tsuda, S. et al. Jpn.J.Appl.Phys. 26–1, 33 (1987)Google Scholar
6. Tarui, H. et al. Jpn.J.Appl.Phys. 28–12, 2436 (1989)Google Scholar
7. Matsuda, A. and Tanaka, K., J.Non-Cryst.Solids 97&98, 1367 (1987)Google Scholar
8. Nakabayashi, H., Takeuchi, A., Yamaguchi, S. and Hamakawa, Y., Technical Digest of the Int’l PVSEC-3, Tokyo, 701 (1987)Google Scholar
9. Carlson, D.E., Arya, R.R., Bennett, M.S., Catalano, A., D’aiello, R.C., Dickson, C.R., Fortman, C.M., Goldstein, B., Morris, J., Newton, J.L. and Wiedeman, S., Solar Cells 24, 165 (1988)Google Scholar
10. Sato, K., Deguchi, M., Itagaki, T., Morikawa, , Ishihara, T., Kawabata, K., Sasaki, H. and Aiga, M., in Proceedings of the 9th E.C. Photovoltaic Solar Energy Conference, Freiburg, 271 (1989)Google Scholar
11. Nakamura, N. et al., Jpn.J.Appl.Phys. 28–10, 1762 (1989)Google Scholar
12. LeComber, P.G., Madan, A. and Spear, W.E., J.Non-Cryst.Solids 11, 219 (1972)Google Scholar
13. Hishikawa, Y. et al. in Proceedings of the 9th E.C. Photovoltaic Solar Energy Conference, Freiburg, 37 (1989)Google Scholar
14. Knights, J.C., Lukovsky, G. and Nemanich, R.J., J.Non-Cryst.Solids 32, 393 (1979)Google Scholar
15. Knights, J.C., Jpn.J.Appl.Phys. Suppl. 18–1, 101 (1979)Google Scholar
16. Kuznetsov, V.I., Van Oort, R.C. and Metselaar, J.W., J.Appl.Phys. 65, 575 (1989)Google Scholar
17. Hishikawa, Y. et al. this volumeGoogle Scholar
18. Bergman, J., Gordon, J. and Shapira, Yoram, J.Vac.Sci.Technol. A7, 2632, (1989)Google Scholar
19. James Ye, Ya-Gu and Anderson, W.A., Solar Cells 25, 169 (1988)Google Scholar
20. Hasegawa, S. and Imai, Y., Phil.Mag. B46, 239 (1982)Google Scholar
21. Xu, X., Morimoto, A., Kumeda, M. and Shimizu, T., Jpn.J.Appl.Phys. 26–11, L1818 (1987)Google Scholar
22. Jackson, W.B., Biegelsen, D.K., Nemanich, R.J. and Knights, J.C., Appl.Phys.Lett. 42, 105 (1983)Google Scholar
23. Hishikawa, Y., J.Appl.Phys. 62, 3150 (1987)Google Scholar
24. Lannin, J.S., in Semiconductors and Semimetals Vol.2IB, edited by Pankove, J. (Academin Press, 1984)159 Google Scholar
25. Antoine, A.M. and Drevillon, B., J.Appl.Phys. 63, 360 (1988)Google Scholar
26. Nakano, S. et al. Jpn.J.Appl.Phys. 25–12, 1936 (1986)Google Scholar
27. Ohnishi, M. et al. to be published in the proceedings of the ISES Solar World Congress, Kobe (1989)Google Scholar