Skip to main content Accessibility help

Acceptor Dopants in Bulk and Nanoscale ZnO

  • Matthew D. McCluskey (a1), Marianne C. Tarun (a1) and Samuel T. Teklemichael (a1)


Zinc oxide (ZnO) is a semiconductor that emits bright UV light, with little wasted heat. This intrinsic feature makes it a promising material for energy-efficient white lighting, nano-lasers, and other optical applications. For devices to be competitive, however, it is necessary to develop reliable p-type doping. Although substitutional nitrogen has been considered as a potential p-type dopant for ZnO, recent theoretical and experimental work suggests that nitrogen is a deep acceptor and will not lead to p-type conductivity. In nitrogen-doped samples, a red photoluminescence (PL) band is correlated with the presence of deep nitrogen acceptors. PL excitation (PLE) measurements show an absorption threshold of 2.26 eV, in good agreement with theory. The results of these studies seem to rule out group-V elements as shallow acceptors in ZnO, contradicting numerous reports in the literature. Optical studies on ZnO nanocrystals show some intriguing leads. At liquid-helium temperatures, a series of sharp IR absorption peaks arise from an unknown acceptor impurity. The data are consistent with a hydrogenic acceptor 0.46 eV above the valence band edge. While this binding energy is still too deep for many practical applications, it represents a significant improvement over the 1.4-1.5 eV binding energy for nitrogen acceptors. Nanocrystals present another twist. Due to their high surface-to-volume ratio, surface states are especially important. In our model, the 0.46 eV level is shallow with respect to the surface valence band, raising the possibility of surface hole conduction.



Hide All
1. Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., and Steiner, T., Journ. Vacuum Sci. Tech B 22, 932 (2004).
2. Look, D.C., “Recent advances in ZnO materials and devices,” Mater. Sci. Engin. B 80, 383 (2001).
3. Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R., and Yang, P.D., Science 292, 1897 (2001).
4. Chu, S., Wang, G., Zhou, W., Lin, Y., Chernyak, L., Zhao, J., Kong, J., Li, L., Ren, J. and Liu, J., Nature Nanotechnology 6, 506 (2011).
5. Tang, Z.K., Wong, G.K.L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Appl. Phys. Lett. 72, 3270 (1998).
6. Zu, P., Tang, Z.K., Wong, G.K.L., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Solid State Commun. 103, 459 (1997).
7. Minami, T., MRS Bulletin 25(8), 38 (2000).
8. Dransfield, G.P., Radiat. Prot. Dosimetry 91, 271 (2000).
9. Clarke, D.R., Journal of the American Ceramic Society 82, 485 (1999).
10. Wager, J.F., Science 300, 1245 (2003).
11. Ntep, J.M., Hassani, S.S., Lusson, A., Tromson-Carli, A., Ballutaud, D., Didier, G., and Triboulet, R., Journ. Crystal Growth 207, 30 (1999).
12. Smith, J.W., Tokach, M.D., Goodband, R.D., Nelssen, J.L., and Richert, B.T., Journal of Animal Science 75, 1861 (1997).
13. Jokela, S.J. and McCluskey, M.D., Phys. Rev. B 76, 193201 (2007).
14. McCluskey, M.D. and Jokela, S.J., J. Appl. Phys. 106, 071101 (2009).
15. Look, D.C. and Claflin, B., Phys. Stat. Sol. (b) 241, 624 (2004).
16. Bierwagen, O., Ive, T., Van de Walle, C.G., and Speck, J.S., Appl. Phys. Lett. 93, 242108 (2008).
17. Lyons, J.L., Janotti, A., and Van de Walle, C.G., Appl. Phys. Lett. 95, 252105 (2009).
18. Lany, S. and Zunger, A., Phys. Rev. B 81, 205209 (2010).
19. Tarun, M.C., Zafar Iqbal, M., and McCluskey, M.D., AIP Advances 1, 022105 (2011).
20. Van de Walle, C.G. and Neugebauer, J., Nature 423, 626 (2003).
21. Kiliç, Ç and Zunger, A., Appl. Phys. Lett. 81, 73 (2002).
22. Wang, J., Liu, X.-L., Yang, A.-L., Zheng, G.-L., Yang, S.-Y., Wei, H.-Y., Zhu, Q.-S., and Wang, Z.-G., Appl. Phys. A 103, 1099 (2011).
23. Lichti, R.L., Chow, K.H., and Cox, S.F.J., Phys. Rev. Lett. 101, 136403 (2008).
24. Selim, F.A., Tarun, M.C., Wall, D.E., Boatner, L.A., and McCluskey, M.D., Appl. Phys. Lett. 99, 202109 (2011).
25. Schirmer, O.F. and Zwingel, D., Solid State Commun. 8, 1559 (1970).
26. Jokela, S.J., Tarun, M.C., and McCluskey, M.D., Physica B 404, 4801 (2009).
27. Jaros, M., Phys. Rev. B 16, 3694 (1977).
28. McCluskey, M.D., Johnson, N.M., Van de Walle, C.G., Bour, D.P., Kneissl, M., and Walukiewicz, W., Phys. Rev. Lett. 80, 4008 (1998).
29. Lyons, J.L., Janotti, A., and Van de Walle, C.G., Phys. Rev. Lett. 108, 156403 (2012).
30. Teklemichael, S. T., Hlaing Oo, W. M., McCluskey, M. D., Walter, E. D., and Hoyt, D. W., Appl. Phys. Lett. 98, 232112 (2011).
31. Teklemichael, S. T. and McCluskey, M. D., Nanotechnology 22, 475703 (2011).
32. Teklemichael, S. T. and McCluskey, M. D., J. Phys. Chem. C 116, 17248 (2012).
33. Prades, J. D., Cirera, A., Morante, J. R., and Cornet, A., Thin Solid Films 515, 8670 (2007).
34. Zhou, H., Alves, H., Hofmann, D.M., Kriegseis, W., Meyer, B.K., Kaczmarczyk, G., and Hoffmann, A., Appl. Phys. Lett. 80, 210 (2002).
35. Norberg, N.S. and Gamelin, D.R., J. Phys. Chem. B 109, 20810 (2005).
36. Kresse, G., Dulub, O., and Diebold, U., Phys. Rev. B 68, 245409 (2003).
37. Reynolds, D. C., Look, D. C., Jogai, B., Litton, C. W., Collins, T. C., Harsch, W., and Cantwell, G., Phys. Rev. B 57, 12151 (1998).
38. Matsumoto, T., Kato, H., Miyamoto, K., Sano, M., Zhukov, E. A., and Yao, T., Appl. Phys. Lett. 81, 1231 (2002).
39. Zhang, Y., Lin, B., Sun, X., and Fu, Z., Appl. Phys. Lett. 86, 131910 (2005).
40. Fonoberov, V. A., Alim, K. A., Balandin, A. A., Xiu, F., and Liu, J., Phys. Rev. B 73, 165317 (2006).
41. Fallert, J., Hauschild, R., Stelzl, F., Urban, A., Wissinger, M., Zhou, H., Klingshirn, C., and Kalt, H., J. Appl. Phys. 101, 073506 (2007).
42. Thonke, K., Gruber, Th., Teofilov, N., Schönfelder, R., Waag, A., and Sauer, R.. Physica B 308-310, 945 (2001).
43. Wang, X., Yang, S., Yang, X., Liu, D., Zhang, Y., Wang, J., Yin, J., Liu, D., Ong, H. C., and Du, G., J. Cryst. Growth 243, 13 (2002).


Acceptor Dopants in Bulk and Nanoscale ZnO

  • Matthew D. McCluskey (a1), Marianne C. Tarun (a1) and Samuel T. Teklemichael (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed