Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-23T22:31:57.542Z Has data issue: false hasContentIssue false

Acceptor Delta-Doping in GaAs

Published online by Cambridge University Press:  25 February 2011

W. S. Hobson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave, Murray Hill, NJ
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave, Murray Hill, NJ
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave, Murray Hill, NJ
G. Cabaniss
Affiliation:
Solecon Laboratories, San Jose CA.
Get access

Abstract

We have investigated the formation and diffusion of delta-doped layers in GaAs employing the acceptors Zn, Cd, and C. Organometallic Vapor Phase Epitaxy was used for the growth of the Zn and Cd δ-doped layers while Metalorganic Molecular Beam Epitaxy was utilized to achieve C δ-doping. The narrowest atomic profiles for Zn had full width at half maxima of 80 Å for peak Zn concentrations of ≤ 3 × 1018 cm-3, as measured by SIMS. An effective diffusion coefficient of ≤ 7 × 1017 cm2/s is estimated for a growth temperature of 625°C, based on multiple Zn δ-doped layers. For carbon, a doping spike of 7 × 1019cm-3 with a full width at half maximum of 50Å, as measured by electrochemical capacitance voltage profiling, was achieved and represents the highest doping level yet reported for planar doping. By contrast, it was difficult to achieve doping levels ≥ 4 × 1017 cm-3 for Cd due to its high vapor pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Koch, F. and Zrenner, A., Mater. Sci. Eng. B1, 221 (1989).Google Scholar
2 Ploog, K., Hauser, M., and Fischer, A., Appl. Phys. A45, 233 (1988).Google Scholar
3 Ullrich, B., Schubert, E. F., Stark, J. B., and Cunningham, J. E., Appl. Phys. A47, 123 (1988).Google Scholar
4 Wood, C. E. C., Metze, G., Berry, J., and Eastman, L. F., J. Appl. Phys. 51, 383 (1980).Google Scholar
5 Beall, R. B., Clegg, J. B., and Harris, J. J., Semicond. Sci. Technol. 3, 612 (1988).Google Scholar
6 Chin, T. H., Cunningham, J. E., Tell, B., and Schubert, E. F., J. Appl. Phys. 64, 1578 (1988).Google Scholar
7 Kobayashi, N., Makimoto, T., and Horikoshi, Y., Jpn. J. Appl. Phys. 25, L746 (1986).Google Scholar
8 Lanzilloto, A-M., Santos, M., and Shayegan, M., Appl. Phys. Lett. 55, 1445 (1989).Google Scholar
9 Ohno, H.. Ikeda, E., and Hasegawa, H., Jpn. J. Appl. Phys. 23, L369 (1984).Google Scholar
10 Santos, M., Sajoto, T., Zrenner, A., and Shayegan, M., Appl. Phys. Lett. 53, 2504 (1988).Google Scholar
11 Sasa, S., Muto, S., Kondo, K., Ishikawa, H., and Hiyamizu, S., Jpn. J. Appl. Phys. 24, L602 (1985).Google Scholar
12 Schubert, E. F., Chiu, T. H., Cunningham, J. E., Tell, B., and Stark, J. B., J. Electron. Mater. 17.527 (1988).Google Scholar
13 Kobayashi, N.. Makimoto, T., and Horikoshi, Y., Appl. Phys. Lett. 50, 1435 (1987).Google Scholar
14 Sharma, B. L., Diffusion in Semiconductors (Trans Tech, Clausthal - Zellerfeld, Germany. 1970), p. 13.Google Scholar
15 Kuech., T. E. Wang, P.-J., Tischler, M. A.. Potemski, R., Scilla, G. J., and Cardone, F., J. Crysl. Growth 93, 624 (1988).Google Scholar
16 Enquist, P., Huichby, J. A.., and de Lyon, T. J., J. Appl. Phys. 63, 4485 (1988).Google Scholar