Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-27T13:47:07.484Z Has data issue: false hasContentIssue false

Absorber Films of Antimony Chalcogenides via Chemical Deposition for Photovoltaic Application

Published online by Cambridge University Press:  01 February 2011

M. T. S. Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos – 62580, México.
Y. Rodríguez-Lazcano
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos – 62580, México.
Y. Peña
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos – 62580, México.
S. Messina
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos – 62580, México.
J. Campos
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos – 62580, México.
P. K. Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos – 62580, México.
Get access

Abstract

Antimony sulfide thin films (300 nm) have been deposited on glass substrates at 1–10°C from chemical bath. When heated these become crystalline and photoconductive with optical band gap (direct) of 1.7 eV. Thin films formed from chemical baths containing SbCl3 and sodium selenosulfate are of mixed phase Sb2O3/Sb2Se3, which when heated in the presence of Se-vapor converts to single phase Sb2Se3 film with optical band gap of 1.1 eV. Such films possess dark conductivity of 10-8 ohm-1cm-1 and show photosensitivity of two orders. Reaction of Sb2S3-CuS in nitrogen at 400°C produces crystalline, photoconductive p-type CuSbS2 with optical band gap (direct) of 1.5 eV. By controlling the deposition and heating condition, (i)Sb2S3-(p)CuSbS2 layer is formed, which is utilized in a photovoltaic structure, (n)CdS:In-(i)Sb2S3-(p)CuSbS2, with a Voc of 345 mV and Jsc 0.18 mA/cm2 under 1 kW m-2 tungsten halogen illumination. In the case of a structure, CdS:Cl-Sb2S3-Cu2-xSe, Voc of 350 mV and Jsc of 0.5 mA/cm2 are observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bhattacharya, R. N. and Pramanik, P., Solar Energy Materials 6, 317 (1982)Google Scholar
[2] Savadogo, O., Sol. Energy Mater. Sol. Cells 52, 361 (1998).Google Scholar
[3] Mane, R. S. and Lokhande, C. D., Materials Chemistry and Physics 65, 1 (2000).Google Scholar
[4] Nair, M. T. S., Peña, Y., Campos, J., García, V. M., and Nair, P. K., J. Electrochem. Soc. 145, 2113 (1998).Google Scholar
[5] Rodríguez-Lazcano, Y., Peña, Y., Nair, M. T. S., and Nair, P. K. in Materials for Energy Storage, Generation and Transport, edited by Schwarz, R. B., Ceder, G., and Ringel, S. A., (Mater. Res. Soc. Proc. 730, San Francisco, CA, 2002) pp. 149154 Google Scholar
[6] Rodríguez-Lazcano, Y., Nair, M. T. S. and Nair, P. K., J. Crystal Growth 223, 399 (2001).Google Scholar
[7] Nair, P. K., Nair, M. T. S., García, V. M., Arenas, O. L., Peña, Y., Castillo, A., Ayala, I. T., Gomez Daza, O., Sánchez, A., Campos, J., Hu, H., Suárez, R., y Rincón, M. E., Solar Energy Materials and Solar Cells 52, 313 (1998).Google Scholar
[8] García, V. M., Nair, P. K., y Nair, M. T. S., J. Cryst. Growth 203, 113 (1999).Google Scholar
[9] Black, J., Conwell, E. M., Seigle, L. and Spencer, C. W., J. Phys. Chem. Solids 2, 240 (1957).Google Scholar
[10] Gilbert, L. R., Van Pelt, B. and Wood, C., J. Phys. Chem. Solids 35, 1629 (1974).Google Scholar