Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T16:05:55.091Z Has data issue: false hasContentIssue false

X-Ray Study of Non-Periodic Si/SiGe Multilayers

Published online by Cambridge University Press:  22 February 2011

H. -J. Herzog
Affiliation:
Daimler-Benz AG, Research Center Ulm, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
H. Kibbel
Affiliation:
Daimler-Benz AG, Research Center Ulm, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
F. Schäffler
Affiliation:
Daimler-Benz AG, Research Center Ulm, Wilhelm-Runge-Str. 11, D-7900 Ulm, Germany
Get access

Abstract

X-ray diffraction is applied for the assessment of structural data such as lattice mismatch and layer thickness of MBE grown Si/Si1−xGex heterobipolar transistor and double-barrier resonant-tunneling structures. Rocking curves from the former structure show distinct features which are obviously correlated to the individual layer parameters. The diffraction profile of the resonant tunneling structure is not only more complicated because of the larger number of parameters but also due to the strong interference effects resulting from the layer set-up. For a determination of the structural parameters a comparison of the experimental diffraction pattern with simulated rocking curves is performed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] See for example: Thin Solid Films, vol. 183 and 184 (1989)Google Scholar
[2] See for example: Bartels, W.J. and Nijmann, W., J. Cryst. Growth 44, 518 (1978)CrossRefGoogle Scholar
[3] Speriosou, V. S. and Vreeland, T. Jr, J. Appl. Phys. 56, 1591 (1984)CrossRefGoogle Scholar
[4] Fewster, P. F. and Curling, C. J., J. Appl. Phys. 62, 4154 (1987)CrossRefGoogle Scholar
[5] Wie, C. R., J. Appl. Phys. 66, 985 (1989)Google Scholar
[6] Chu, X. and Tanner, B.K., Semicond. Sci. Technol. 2, 765 (1987)Google Scholar
[7] Ryan, T. W., Hatton, P. D., Bates, S., Watt, M., Sotomayer-Torres, C., Claxton, P. A., and Roberts, J. S., Semicond. Sci. Technol. 2, 241 (1987)Google Scholar
[8] Jeong, J., Schlesinger, T. E., and Milnes, A.G., J. Cryst. Growth 87, 265 (1988)Google Scholar
[9] Wie, C. R., J. Appl. Phys. 65, 1036 (1989)Google Scholar
[10] Holloway, H., J. Appl. Phys. 67, 6229 (1990)Google Scholar
[11] Tapfer, L. and Ploog, K., Phys. Rev. B40, 9802 (1989)Google Scholar
[12] Schuberth, G., Abstreiter, G., Gornik, E., Schäffler, F., and Luy, J. -F., Phys. Rev. B43, 2280 (1991)Google Scholar
[13] König, U., Herzog, H. -J., Jorke, H., Kasper, E., and Kibbel, H., in ‘Collected Paper of MBE-CST-2’, p. 193, Tokyo (1982)Google Scholar
[14] Kibbel, H., Kasper, E., and Narozny, P., Thin Solid Films 184, 163 (1990)Google Scholar
[15] Kasper, E., Kibbel, H., and Sch, F. äffler, J. Electrochem. Soc. 136, 1154 (1989)Google Scholar
[16] Herzog, H. -J., Jorke, H., and Kasper, E., J. Electrochem. Soc. 136, 3026 (1989)Google Scholar
[17] Jorke, H., Herzog, H. -J., and Kibbel, H., Phys. Rev. B41, 12278 (1990)CrossRefGoogle Scholar
[18] Herzog, H. -J., Csepregi, L., and Seidel, H., J. Electzrochem. Soc. 131, 2969 (1984)Google Scholar
[19] Cockerton, S., Miles, S. J., Green, G. S., and Tanner, B. K., J. Crystal Growth 99, 1324 (1990)Google Scholar