Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T05:37:37.075Z Has data issue: false hasContentIssue false

Void-Free Metallization By Controlling Sputtering Conditions Of Tin Barrier Metal Films

Published online by Cambridge University Press:  15 February 2011

T. Yamaoka
Affiliation:
Production Engineering R&D Department, Nippondenso Co. Ltd., 448 Kariya, Aichi, Japan
T. Yamauchi
Affiliation:
Production Engineering R&D Department, Nippondenso Co. Ltd., 448 Kariya, Aichi, Japan
Get access

Abstract

Production Engineering R‘‘void-free’ metallization is proposed. It is shown that void formation is suppressed when the TiAl3 intermediate layer is formed at the interface between the Al alloy and reactively sputtered TiN barrier metal films. We have investigated the relationship between void formation and coverage of the intermediate layer. It is found that a coverage of more than 60 % TiAl3 perfectly suppresses void formation. The interfacial reaction is achieved by using ‘soft TiN', which arises from the short migration length of the sputtered particles impinging on the substrate surface when dc power is decreased. The soft TiN film includes many vacancies and crystallographically disordered regions which easily cause rearrangement of the TiN films by movement of Ti atoms during annealing. It is thought that these Ti atoms compensate vacancies in the Al-Si-Cu film and suppress the formation of Al voids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klema, J., Pyle, R., and Domagogue, E., IEEE Proc. Int. Rel. Phys. Symp., 22, 1 (1984).Google Scholar
2. Curry, J., Fitzgibbon, G., Guan, Y., Muollo, R., Nelson, G., and Thomas, A., 22nd Ann. Proc.of Reliability Physics, IEEE, New York, 6 (1984).Google Scholar
3. Turner, T., Wendel, K., Proc. IEEE IRPS, 23, 142 (1985).Google Scholar
4. Borgesen, P., Korhonen, M.A. and Li, C.-Y., Thin Solid Films, 220, 8 (1992).Google Scholar
5. Oates, A. S. and Lloyd, J. R., Mat. Res. Soc. Symp. Proc. 338, 269 (1994).Google Scholar
6. Ames, I., d'Heurle, F. M., and Horstmann, R., IBM J. Res. Dev. 14, 461 (1970).Google Scholar
7. d'Heurle, F. M., Ainslie, N. G., Gangulee, A., and Shine, M. C., J. Vac. Sci. Technol. 9, 289 (1972).Google Scholar
8. Onoda, H., Kageyama, M., Tatara, Y.and, Hukuda, Y., IEEE Trans. Electron Device 40, 1614 (1993).Google Scholar
9. Gadepally, K., Geha, S, Myers, E. R., and Thomas, M. T., Mat. Res. Soc. Symp. Proc. 338, 301 (1994).Google Scholar
10. Flinn, P. A., J. of the Mat. Res. Soc. 6, 1498 (1991).Google Scholar
11. Vinci, R. P. and Bravman, J. C., in Thin Films: Stresses and Mechanical Properties IV (Mat. Res. Soc. Proc. 308, 1993), pp. 337341.Google Scholar
12. Yamauchi, T., Yamaoka, T. and Sobue, S., J. Appl. Phys. 78, 2385 (1995).Google Scholar
13. Sobue, S., Yamauchi, T., Toyama, T., Mukainakano, S., Ueno, Y., Takenaka, O., and Hattori, T., Proceedings of the First International Symposium on Control of Semiconductor Interfaces, edited by Ohdomari, I., Ohshima, M., and Hiraki, A. (Elsevier, Amsterdam, 1993), 423.Google Scholar