Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-16T10:09:31.288Z Has data issue: false hasContentIssue false

A Unified Model for the Space Charge Limited Currents in Organic Materials Combining Field Dependent Mobility and Poole-Frenkel Detrapping

Published online by Cambridge University Press:  21 March 2011

S. C. Jain
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
W. Geens
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
V. Kumar
Affiliation:
Solid State Physics Laboratory, Delhi 110054, India
A. Kapoor
Affiliation:
Solid State Physics Laboratory, Delhi 110054, India
A. Mehra
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
T. Aernouts
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
J. Poortmans
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
R. Mertens
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
M. Willander
Affiliation:
Chalmers University of Technology, Department of Physics, S-41296 Gäteborg, Sweden
Get access

Abstract

We have calculated J-V characteristics of an organic conducting sample (containing traps) including the Poole-Frenkel Effect (PFE). Both shallow and exponentially distributed traps are considered. We show that our approach is equivalent to combining the effect of trapping and using the field dependent mobility in one unified model. For shallow single level or shallow Gaussian traps, inclusion of PFE or using the (well-known) field dependent mobility gives the same dependence of current on voltage at a given temperature. However the value of zero field mobility µ0 comes out to be different. We have fabricated and measured the J-V curves of the ITO/MEH-OPV5/Al diodes. An extremely fast rise with voltage V is observed at small voltages, which can be interpreted either by the Schottky contact limited Shockley like current or by bulk space charge limited current with PFE. The correct mechanism can be determined by making J-V measurements at different temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rakhmanova, S. V., and Conwell, E. M., Appl. Phys. Lett. 76, 3822 (2000).Google Scholar
2. Jain, S. C., Geens, W., Mehra, A., Kumar, V., Aernouts, T., Poortmans, J. and Mertens, R., J. Appl. Phys. 89, April 1 (2001).Google Scholar
3. Campbell, A. J., Weaver, M. S., Lidzey, D. G., and Bradley, D. D., JournalofAppliedPhysics 84, 6737 (1998).Google Scholar
4. Crone, B. K., Campbell, I. H., Davids, P. S., and Smith, D. L., Journal of Applied Physics 86, 5767 (1999); References to earlier papers of this group are given in this paper.Google Scholar
5. Blom, P. W. M., and Jong, M. J. M. de, IEEE J. Selected Topics in Quantum Electronics 4, 105 (1996).Google Scholar
6. Kao, K. C. and Hwang, W., Electrical Transport in Solids, Pergamon Press, 1981.Google Scholar
7. Bässler, H., Phys. Status Solidi B 175, 15 (1993).Google Scholar
8. Novikov, S. V., Dunlap, D. H., Kenkre, V. M., Parris, P. E., and Vannikov, A. V., Phys. Rev. Lett. 81, 4472 (1998).Google Scholar
9. Martens, H. C. F., Brom, H. B., and Blom, P. W. M., Phys. Rev. B 60, R8489 (1999).Google Scholar
10. Martens, H. C.F., Blom, P. W.M., and Schoo, H. F. M., Phys. Rev. B 61, 7489 (2000).Google Scholar
11. Yu, Z. G., Smith, D. L., Saxena, A., Martin, R. L., and Bishop, A. R., Phys. Rev. Lett. 84,721 (2000).Google Scholar
12. Baranovskii, S. D., Cordes, H., Hensel, F., and Leising, G., Phys. Rev. B 62, 7934 (2000).Google Scholar
13. Kumar, V. et al., to be published.Google Scholar