Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T16:13:47.210Z Has data issue: false hasContentIssue false

Ultrathin Silicon Dioxide Formation By Ozone On Ultraflat Si Surface

Published online by Cambridge University Press:  10 February 2011

A. Kurokawa
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, 305-8568, JAPAN
T. Maeda
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, 305-8568, JAPAN
K. Sakamoto
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, 305-8568, JAPAN
H. Itoh
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, 305-8568, JAPAN
K. Nakamura
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, 305-8568, JAPAN
K. Koike
Affiliation:
Iwatani International Corp., 4-5-1 Katsube, Moriyama, 524-0041, JAPAN
D.W. Moon
Affiliation:
Korea Research Institute of Standards and Science, Taejon 305-606, Korea
Y.H. Ha
Affiliation:
Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
S. Ichimura
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, 305-8568, JAPAN
A. Ando
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, 305-8568, JAPAN
Get access

Abstract

We prepared an atomically flat silicon substrate which had a step-terrace structure and observed the topography of the ozone-oxidized surface to clarify whether homogeneous oxidation occurs with ozone. The oxide was formed with high-concentration ozone gas with a thickness of 2.5nm at a temperature of 350°C. The oxide surface still maintained the same step-terrace structure as observed before oxidation, which revealed that ozone-oxidation occurs layer-by-layer and produces an atomically flat oxide. XPS and MEIS analyses show that the stoichiometry of ozone oxide grown at 350°C is the same as that of an oxide grown thermally at 750°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kurokawa, A., Ichimura, S., Jpn. J. Appl. Phys. 34, L1606 (1995).10.1143/JJAP.34.L1606Google Scholar
2 Kurokawa, A., Ichimura, S. and Moon, D. W., Mat. Res. Soc. Symp. Proc. 477, 359 (1997).10.1557/PROC-477-359Google Scholar
3 Nakamura, K., Kurokawa, A. and Ichimura, S., J. Vac. Sci. Technol. 16, 2441 (1997).10.1116/1.580905Google Scholar
4 Kurokawa, A., Nakamura, K. and Ichimura, S., Mat. Res. Soc. Symp. Proc. 513, 37 (1998).10.1557/PROC-513-37Google Scholar
5 Yamagishi, H., Koike, N., Imai, K., Yamabe, K. and Hattori, T., Jpn. J. Appl. Phys. 27, LI 398 (1988).10.1143/JJAP.27.997Google Scholar
6 Miyazaki, S., Nishimura, N., Fukuda, M., Ley, L. and Risten, J., Appl. Surf. Sci, 113/114, 585 (1997).10.1016/S0169-4332(96)00805-7Google Scholar
7 Nakamura, K., Ichimura, S. and Kurokawa, A. (submitted to JVST).Google Scholar
8 Miki, K., Sakamoto, K. and Sakamoto, T., Surf. Sci., 406, 312 (1998).10.1016/S0039-6028(98)00131-9Google Scholar
9 Ichimura, S., Hosokawa, S., Nonaka, H. and Arai, K., J. Vac. Sci. Technol. A9, 2369 (1991).10.1116/1.577278Google Scholar
10 Koike, K., Ichimura, S., Kurokawa, A.: 1999 Spring MRS symposium proceedings (to be submitted).Google Scholar
11 Lee, J. C., Chung, C. S., Kang, H. J., Kim, Y. P., Kim, H. K. and Moon, D. W., J. Vac. Sci. Technol. A 13 (1995) 1325.10.1116/1.579559Google Scholar
13 Ohmi, T., Miyashita, M., Itano, M., Imaoka, T. and Kawanabe, I., IEEE Trans. Electron Devices, 39, 537 (1992).10.1109/16.123475Google Scholar
14 Endo, K., Arima, K., Kataoka, T., Oshikane, Y., Inoue, H. and Mori, Y., Appl. Phys. Let. 73, 1853(1998).10.1063/1.122304Google Scholar
15 Hattori, T., Fujimura, M., Yagi, T., Ohashi, M., Appl. Surf. Sci. 123/124, 87 (1998)10.1016/S0169-4332(97)00432-7Google Scholar
16 Grunthaner, F. J., Grunthaner, P. J., Vasquez, R. P., Lewis, B. F. and Maserjian, J., J. Vac. Sci. Technol. A16, 1443 (1979).10.1116/1.570218Google Scholar
17 Hollinger, G., Himpsel, F. J., Phys. Rev. B28, 3651(1983).10.1103/PhysRevB.28.3651Google Scholar
18 Hattori, T. and Suzuki, T., Appl. Phys. Lett. 43, 470 (1983).10.1063/1.94392Google Scholar
19 Himpsel, F J., McFreely, F. R., Ibrahim, A. T., Yarmoff, J. A. and Hollinger, G., Phys. Rev. B38, 6084 (1988).10.1103/PhysRevB.38.6084Google Scholar