Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T02:29:03.877Z Has data issue: false hasContentIssue false

A Two Step Rapid Thermal Annealing Process for Be Implant Activation in GaAs

Published online by Cambridge University Press:  28 February 2011

D.L. Plumton
Affiliation:
Texas Instruments Incorporated Central Research Laboratories, Dallas, Tx 75265
W.M. Duncan
Affiliation:
Texas Instruments Incorporated Central Research Laboratories, Dallas, Tx 75265
L.T. Tran
Affiliation:
Texas Instruments Incorporated Central Research Laboratories, Dallas, Tx 75265
Get access

Summary abstract

A two step rapid thermal anneal (RTA) has been studied for activating Be implanted GaAs, where a short duration, high temperature step is used to electrically activate the Be followed by a longer, low temperature anneal for lattice regrowth. p-n diodes show a substantial reduction in reverse diode leakage current after the low temperature second step anneal, when compared to a single step RTA or to furnace annealing (FA). For low energy Be implants, no difference in elecrical activiation between the two step anneal is observed. Raman studies demonstrate that residual substrate impurities and high Be concentrations inhibit restoration of single crystal lattice characteristics after RTA. Lattice quality is shown not to limit diode characteristics in the RTA material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Asbeck, P. M., Miller, D. L., Babcock, E. J., and Kirkpatrick, C. G., IEEE Elec. Dev. Lett., EDL-4, 81, (1983).Google Scholar
2. Tabatabaie-Alavi, K., Masum Choudhury, A. V. M., Kanbe, H., Fonstad, C. G., and Gelpy, J. C., Appl-Phys. Lett., 43, 647, (1983).Google Scholar
3. Chambon, P., Berth, M., and Prevot, B., Appl. Phys. Lett. 46, 162, (1985).Google Scholar
4. Barett, N. J., Bartle, D. C., Todd, A. G., and Grange, J. D., MRS Symp. Proc., 35, 451, (1985).Google Scholar
5. Barett, N. J., Bartle, D. C., Nicholls, R., and Grange, J. D., Inst. Phys. Conf. Ser., 74, 77, (1985).Google Scholar
6. McLevige, W. V., Helix, M. J., Vaidyanathan, K. V., and Streetman, B. G.,J. Appl. Phys., 48, 3342, (1977).Google Scholar
7. McLevige, W. V., Vaidyanathan, K. V., Streetman, B. G., Comas, J., and Plew, L., Sol. State Comm., 25, 1003, (1978).Google Scholar
8. Chambon, P., Erman, M., Theelan, J. B., Prevot, B., and Schwab, C., Appl. Phys. Lett. 45, 390, (1984).Google Scholar
9. Tiong, K.K., Amirtharaj, P.M., Pollak, F.H. and Asp-nes, D.E., Appl. Phys. Lett., 44, 122, (1984).Google Scholar
10. Diellman, J., Prevot, B., and Schwab, C., J. Phys. C: Solid State Phys., Page 516, 1135, (1983).Google Scholar