Skip to main content Accessibility help
×
Home

Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology

Published online by Cambridge University Press:  10 February 2011


O. Auciello
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439
A.R. Krauss
Affiliation:
Argonne National Laboratory, Materials Science and Chemistry Divisions, Argonne, IL 60439
D.M. Gruen
Affiliation:
Argonne National Laboratory, Materials Science and Chemistry Divisions, Argonne, IL 60439
E.M. Meyer
Affiliation:
Institute for Microsensors, Actuators, and Systems (IMSAS), University of Bremen, Bremen
H.G. Busmann
Affiliation:
Fraunhofer Institute for Applied Materials Science, (IFAM), Bremen
J. Tucek
Affiliation:
Argonne National Laboratory, Materials Science and Chemistry Divisions, Argonne, IL 60439
A. Sumant
Affiliation:
Argonne National Laboratory, Materials Science and Chemistry Divisions, Argonne, IL 60439
A. Jayatissa
Affiliation:
Argonne National Laboratory, Materials Science and Chemistry Divisions, Argonne, IL 60439
N. Moldovan
Affiliation:
Experimental Facilities Division, Argonne National Laboratory, Argonne, Illinois 60439
D. C. Mancini
Affiliation:
Experimental Facilities Division, Argonne National Laboratory, Argonne, Illinois 60439
M. N. Gardos
Affiliation:
M. N. Gardos, Raytheon Electronic Systems, 2000 El Segundo, CA 90245

Abstract

Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or SiO2 layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using C60-Ar or CH4-Ar gas mixtures, which result in films that have 3-5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond.


Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Lee, A.P., Pisano, A.P., and Lim, M.G., Mat. Res. Soc. Symp. Proc. Vol. 276, 67 (1992).CrossRefGoogle Scholar
2. Gabriel, K.J., Behi, F., Mahadevan, R., and Mehregany, M.; Sensors and Actuators A21-A23, 184 (1990).CrossRefGoogle Scholar
3. Neuberger, M., Mat. Res.Bull. vol 4, 365 (1969).Google Scholar
4. Spearing, S.M. and Chen, K.S., in “Tribology Issues and Opportunities in MEMS”, edited by Bhushan, B., Kluwer Academic Publisher, The Netherlands (1998) p. 95.CrossRefGoogle Scholar
5. Rymuza, Z., Kusznierewicz, Z., Misiak, M., Schmidt-Szalowski, K., Rzanek-Boroch, Z., and Sentek, J., “Tribology Issues and Opportunities in MEMS”, edited by Bhushan, B., Kluwer Academic Publisher, The Netherlands (1998) p 579.CrossRefGoogle Scholar
6. Gardos, M.N., Tribol. Trans. 31, 427(1988); Tribol. Trans. 32, 30 (1989).CrossRefGoogle Scholar
7. Gardos, M.N., Hong, H.S. and Winer, W.O.; Tribol. Trans. 32, 209 (1990).CrossRefGoogle Scholar
8. Gardos, M.N. (private communication, 1999).Google Scholar
9. Gardos, M. N. in Tribology Issues and Opportunities in MEMS, p. 341, Bhushan, B. ed., Kluwer, 1998; Surface and Coatings Technology 113, 183 (1999).CrossRefGoogle Scholar
10. Davidson, J.L., Ramesham, R., and Ellis, C., J. Electrochem. Soc. 137, 3206 (1990).CrossRefGoogle Scholar
11. Aslam, M., Yang, G.S., and Masood, A., Sensors and Actuators A 45, 131 (1994).10.1016/0924-4247(94)00830-2CrossRefGoogle Scholar
12. Wur, D.R., Davidson, J.L., Kang, W.P., and Kinser, D.L., J. Micromech. Syst. 4, 34 (1995).CrossRefGoogle Scholar
13. Dorsch, O., Holzner, K., Werner, M., Obermeir, E., Harper, R.E., Johnston, C., Chalker, P.R., and Buckley-Golder, I.M., Diamond Relat. Mater. 2, 1096 (1993).10.1016/0925-9635(93)90279-BCrossRefGoogle Scholar
14. Zaho, G., Charlson, E.M., Charlson, E.J., Stacey, T., Meese, J., Popovici, G., and Prelas, M. G., J. Appl. Phys. 73, 1832 (1993).CrossRefGoogle Scholar
15. Moller, S., Obermeir, E., and Lin, J., Sensor and Actuators B: Chemical 25, 343 (1995).10.1016/0925-4005(95)85077-5CrossRefGoogle Scholar
16. Davidson, J.L. and Wang, W.P., Mater. Res. Soc Symp. Proc. 416, 397 (1996).10.1557/PROC-416-397CrossRefGoogle Scholar
17. Yang, G.S. and Aslam, D.M., IEEE Electron. Dev. Lett. 17, 250 (1996).CrossRefGoogle Scholar
18. Harris, S. J. and Goodwin, D. G., J. Phys. Chem 97, 23 (1993).CrossRefGoogle Scholar
19. Gruen, D. M., Liu, S., Krauss, A. R., Luo, J., and Pan, X., Appl. Phys. Lett. 64, 1502 (1994).CrossRefGoogle Scholar
20. Gruen, D. M., Liu, S., Krauss, A. R. and Pan, X., J. Appl. Phys. 75, 1758 (1994). R. Csencsits, D. M. Gruen, A. R. Krauss and C. Zuiker, Mat. Res. Soc. Symp. Proc. 403, 291 (1996).CrossRefGoogle Scholar
21. Goyette, A. N., Lawler, J. E., Anderson, L. W., Gruen, D. M., McCauley, T. G., Zhou, D., and Krauss, A. R., J. Phys. D: App. Phys. 31, 19751986 (1998).CrossRefGoogle Scholar
22. Redfern, P. C., Horner, D. A., Curtiss, L. A. and Gruen, D. M., J. Phys. Chem. 100, 11654 (1996).10.1021/jp953165gCrossRefGoogle Scholar
23. Gruen, D. M., Zuiker, C. D., Krauss, A. R., and Pan, X., J. Vac. Sci. Technol. A 13, 1628 (1995).10.1116/1.579742CrossRefGoogle Scholar
24. Nuth, J. A., Nature, 329, 589 (1987).10.1038/329589b0CrossRefGoogle Scholar
25. Zuiker, C. D., Krauss, A. R., Gruen, D. M., Carlisle, J. A., Terminello, L. J., Asher, S. A., and Bormett, R. W.. Mat. Res. Soc. Proc. 437, 211 (1996).CrossRefGoogle Scholar
26. Csencsits, R., Zuiker, C. D., Gruen, D. M., Krauss, A. R., Solid State Phenom. 51–52, 261(1996).10.4028/www.scientific.net/SSP.51-52.261CrossRefGoogle Scholar
27. Gruen, D. M., Liu, S., Krauss, A. R., Luo, J. and Pan, X., Appl. Phys. Lett. 64, 1502 (1994)CrossRefGoogle Scholar
28. Erdemir, A., Bindal, C., Fenske, G. R., Zuiker, C., Cesncsits, R., Krauss, A. R. and Gruen, D. M., Diamond Films and Technology 6, 31 (1996).Google Scholar
29. Auciello, O., Krauss, A.R., Gruen, D.M., Meyer, E.M., Busmann, H.G., Tucek, J., Sumant, A., Jayatissa, A., Ding, M. Q., Moldovan, N., Mancini, D. C., and Gardos, M. N., Jour. of Microelectromechanical Systems (in press, 1999).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 2 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 3rd December 2020. This data will be updated every 24 hours.

Hostname: page-component-6c64649b67-k9djv Total loading time: 0.302 Render date: 2020-12-03T09:15:32.283Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Dec 03 2020 09:15:09 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *