Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-05T14:16:08.103Z Has data issue: false hasContentIssue false

Transmission Electron Miscroscopy Study of the Fused Silicon/Diamond Interface

Published online by Cambridge University Press:  02 August 2011

G. N. Yushin
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27695, USA
S. D. Wolter
Affiliation:
Army Research Office, Research Triangle Park, NC 27709, USA
A. V. Kvit
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27695, USA
R. Collazo
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27695, USA
J. T. Prater
Affiliation:
Army Research Office, Research Triangle Park, NC 27709, USA
Z. Sitar
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27695, USA
Get access

Abstract

Bonding of polished, polycrystalline diamond films to silicon was performed in ultra high vacuum at 32 MPa of applied uniaxial stress. The transmission electron microscopy (TEM) investigation revealed that the interface of all bonded samples was non-uniform. An abrupt boundary between the two wafers existed only in some parts of the interface, while other parts contained an amorphous interlayer of up to 40 nm in thickness. Electron energy loss spectroscopy (EELS) revealed that this interlayer consisted of oxygen, carbon and silicon. Based on comparison of the microstructure and chemical composition of the interface formed at different bonding temperatures, we propose a model for the silicon/diamond wafer fusion process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yushin, G. N., Wolter, S.D., Kvit, A. V., Collazo, R., Stoner, B. R., Prater, J. T., and Sitar, Z., Appl. Phys. Lett 81, 3275 (2002).Google Scholar
2 Alexander, H. in Dislocations in solids edited by Nabarro, F. R. N., Elsevier Science Publishers B.V., New York, NY, 113 (1986).Google Scholar
3 Ahn, K. Y., Steng, R., Tan, T. Y., Gosele, U., and Smith, P., Appl. Phys. A: Solids Surf. 50, 85 (1990).Google Scholar
4 Kanenko, K. and Kakimoto, K. I., J. Non-Cryst. Solids 270, 181 (2000).Google Scholar
5 Evans, S., in The Properties of Diamond, edited by Fields, J. E., Academic, London, Chap. 4, 181, (1979).Google Scholar
6 Ravindranathan, Kumar P., Dewan, H. S., Roy, R., Diamond and Related Materials 5, 1246 (1996).Google Scholar
7 Evans, S. and Phaal, C., Proceedings of the Fifth Biennial Conference On Carbon, Pennsylvania State University, 147 (1962).Google Scholar
8 Gogotsi, Yury G., Kailer, Andreas, and Nickel, Klaus G., Nature, 401, 663 (1999).Google Scholar
9 Davies, G. and Evans, T., Proc. R. Soc. London, Ser. A 328, 413 (1972).Google Scholar
10 Butenko, Yu. V., Kuznetsov, V. L., Chuvilin, A. L., Kolomiichuk, V. N., Stankus, S. V., Khairulin, R. A., and Segal, B., J. Appl. Phys. 88, 4380 (2000).Google Scholar
11 Pantea, C., Qian, J., Voronin, G. A., and Zerda, T. W., J. Appl. Phys. 91, 1957, (2002).Google Scholar
12 Kishino, S., Kanamori, M., Yoshihizo, N., Tajima, M., and Iizuka, T., J. Appl. Phys. 50, 8240 (1978).Google Scholar
13 Kishino, S., Matsushita, Y., Kanamori, M., and Iizuka, T., Jpn. J. Appl. Phys. 121,1 (1982).Google Scholar
14 Taylor, W. J., Tan, T. Y., and Gosele, U., Appl. Phys. Lett. 62, 3336 (1993).Google Scholar