Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T10:25:46.978Z Has data issue: false hasContentIssue false

Transient Enhanced Diffusion and Gettering of Dopants in Ion Implanted Silicon*

Published online by Cambridge University Press:  21 February 2011

S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
J. Narayan
Affiliation:
On leave of absence at the Microelectronics Center of North Carolina, Research Triangle Park, NC 27709 and the Materials Engineering Dept..North Carolina State University, Raleigh, NC 27650.
R. J. Culbertson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

We have studied in detail the transient enhanced diffusion observed during furnace or rapid-thermal-annealing of ion-implanted Si. We show that the effect originates in the trapping of Si atoms by dopant atoms during implantation, which are retained during solid-phase-epitaxial (SPE) growth but released by subsequent annealing to cause a transient dopant precipitation or profile broadening. The interstitials condense to form a band of dislocation loops located at the peak of the dopant profile, which may be distinct from the band formed at the original amorphous/crystalline interface. The band can develop into a network and effectively getter the dopant. We discuss the conditions under which the various effects may or may not be observed, and discuss preliminary observations on As+ implanted Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract DE-ACO5-840R21400 with Martin Marietta Energy Systems, Inc.

References

REFERENCES

[l] Pennycook, S. J., Narayan, J., and Holland, O. W., J. Appl. Phys. 55, 837 (1984).10.1063/1.333179CrossRefGoogle Scholar
[2] Narayan, J., Holland, O. W., Eby, R. E., Wortman, J. J., Ozguz, V., and Rozgonyi, G. A., Appl. Phys. Lett. 43, 957 (1983).10.1063/1.94200CrossRefGoogle Scholar
[31 Kalish, R., Sedgwick, T. O., Mader, S., and Shatas, S., Appl. Phys. Lett. 44, 107 (1984).10.1063/1.94572CrossRefGoogle Scholar
[4] Lasky, J. B., J. Appl. Phys. 54, 6009 (1983).10.1063/1.331780CrossRefGoogle Scholar
[5] Seidel, T. E., IEEE Electron -evice Lett. EDL–4, 353 (1983).10.1109/EDL.1983.25760CrossRefGoogle Scholar
[6] Oehlein, G. S., Cohen, S. A., Sedgwick, T. O., Appl. Phys. Lett. 45, 417 (1984).10.1063/1.95242CrossRefGoogle Scholar
[7] Hodgson, R. T., Deline, V., Mader, S. M., Morehead, F. F., and Gelpey, J., p. 253 in Energy Beam-Solid Interactions and Transient Thermal Processing, Proc. Mat. Res. Soc. 23 (Elsevier, New York, 1984).Google Scholar
[8] This proceedings.Google Scholar
[9] Holland, O. W., Narayan, J., and Fathy, D., Proc. 1984 Conf. on Ion Beam Modification of Materials (in press, 1984).Google Scholar
[10] Tan, T. Y., Goesele, U., and Morehead, F. F., Appl. Phys. A 31, 97 (1983).10.1007/BF00616312CrossRefGoogle Scholar
[11] Fair, R. B. and Weber, G. R., J. Appl. Phys. 44, 273 (1973)–10.1063/1.1661873CrossRefGoogle Scholar
[12] Pennycook, S. J., Narayan, J., and Holland, O. W., J. Cryst. Growth 70, 1984 (in press).10.1016/0022-0248(84)90321-XCrossRefGoogle Scholar