Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-55wx7 Total loading time: 0.223 Render date: 2021-03-08T07:01:13.548Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Transient Electrochemical Measurements During Copper Chemical Mechanical Polishing

Published online by Cambridge University Press:  01 February 2011

Seung-Mahn Lee
Affiliation:
Department of Materials Science and Engineering and Particle Engineering Research Center University of Florida, Gainesville, FL 32611, U.S.A.
Wonseop Choi
Affiliation:
Department of Materials Science and Engineering and Particle Engineering Research Center University of Florida, Gainesville, FL 32611, U.S.A.
Valentin Craciun
Affiliation:
Department of Materials Science and Engineering and Particle Engineering Research Center University of Florida, Gainesville, FL 32611, U.S.A.
Rajiv K. Singh
Affiliation:
Department of Materials Science and Engineering and Particle Engineering Research Center University of Florida, Gainesville, FL 32611, U.S.A.
Get access

Abstract

Chronoamperometry was used to investigate the reaction/passivation kinetics and thickness of the chemically modified surface layer on the copper during chemical mechanical polishing (CMP). The result showed that the reaction/passivation kinetics and the thickness of the chemically modified surface layer are strongly dependent on the chemistry of CMP slurry in the chemical aspect of CMP and play critical keys in the selection of the chemistry and its concentration. BTA and H2O2 enhanced the passivation kinetics, resulting in thinner layer on the copper surface. In addition, the reaction kinetics increased as pH decreased.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Preston, F. J. Soc. Glass Technol. 112, 14 (1927)Google Scholar
[2] Brown, N. J. Baker, P. C. and Maney, R. T., Proc. SPIE 306, 42 (1981)Google Scholar
[3] Steigerwald, J. M. Murarka, S. P. and Gutmann, R. J. Chemical Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, New York (1997)CrossRefGoogle Scholar
[4] Yu, Y. Yu, C.C. and Orlowski, M. IEEE IEDM, 865 (1993)Google Scholar
[5] Basim, G. B. Ph.D. dissertation, University of Florida (2002)Google Scholar
[6] Choi, W. Lee, S.-M., and Singh, R. K. Proceeding of Material Research Society spring meeting, Material Research Society, San Francisco, 671, M5.1.1 (2001)Google Scholar
[7] Hernandez, J. Wrschka, P. and Oehrlein, G. S. J. Electro. Chem. Soc., 148, G389 (2001)CrossRefGoogle Scholar
[8] Stein, D. J. Hetherington, D. L. Guilinger, T. and Cecchi, J. L. J. Electrochem. Soc. 145, 3190 (1998)CrossRefGoogle Scholar
[9] Stein, D. J. Cecchi, J. L. and Hetherington, D. L. J.Mat. Res. 14, 3695 (1999)CrossRefGoogle Scholar
[10] Nguyen, H. V. Ph.D. Dissertation, Universiteit Twente (2001)Google Scholar
[11] Bielmann, M. Mahajan, U., Singh, R. K. Agarwal, P., Mischler, S., Rosset, E., and Landolt, D., Materials Research Society Symposium – Proceedings, 566, 97 (2000)Google Scholar
[12] Carpio, R., Farkas, J. and Jairath, R., Thin Solid Films, 266, 238 (1995)CrossRefGoogle Scholar
[13] Pourbaix, M., “Atlas Of Electrochemical Equilibria In Aqueous Solution”, Nace, Houston, Tx (1974)Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Transient Electrochemical Measurements During Copper Chemical Mechanical Polishing
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Transient Electrochemical Measurements During Copper Chemical Mechanical Polishing
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Transient Electrochemical Measurements During Copper Chemical Mechanical Polishing
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *