Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-15T07:55:55.719Z Has data issue: false hasContentIssue false

Toward Elimination of Solvents in Micro/Nanofabrication: Solventless Polymerization and Its Applications

Published online by Cambridge University Press:  15 February 2011

Hongwei Gu
Affiliation:
Department of Chemistry
Degang Fu
Affiliation:
Department of Chemistry
Chenjie Xu
Affiliation:
Department of Chemistry
Jun Tang
Affiliation:
Department of Chemistry
Jie Xie
Affiliation:
Materials Characterization and Preparation Facility Hong Kong University of Science & Technology Clear Water Bay, Hong Kong (SAR), China
Bing Xu
Affiliation:
Department of Chemistry
Get access

Abstract

Here we report a solventless polymerization process, which involves adding catalysts on the surface of a solid substrate and polymerizing volatile monomers at the gas/solid interface. It provides an alternative to other thin-film-making processes and may lead to reduce or eliminate the use of solvents in micro/nanofabrication. On silicon or silicon dioxide substrates, solventless produced thin films show improved smoothness inside microchannels, and suits reactive ion etching (RIE) process. In addition, this process offers a simple route to generate microstructures that are inaccessible in the presence of solvent, and provides a simple and fast protocol to screen catalysts in a parallel mode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gupta, V. K., Skaife, J. J., Dubrovsky, T. B., and Abbott, N. L., Science 279, 20772080 (1998)Google Scholar
2 Frechet, J. M. J., Pure Appl. Chem. 64, 12391248 (1992); Q. H. Lin, T. Steinhausler, L. Simpson, M. Wilder, D. R. Medeiros, C. G. Willson, J. Havard, and J. M. J. Frechet, Chem. Mat. 9, 1725-1730 (1997).Google Scholar
3 Percec, V., Glodde, M., Bera, T. K., Miura, Y., Shiyanovskaya, I., Singer, K. D., Balagurusamy, V. S. K., Heiney, P. A., Schnell, I., Rapp, A., Spiess, H. W., Hudson, S. D., and Duan, H., Nature 419, 384387 (2002); A. P. Alivisatos, P. F. Barbara, A. W. Castleman, J. Chang, D. A. Dixon, M. L. Klein, G. L. McLendon, J. S. Miller, M. A. Ratner, P. J. Rossky, S. I. Stupp, and M. E. Thompson, Adv. Mater. 10, 1297–1336 (1998); S. I. Stupp, S. Son, H. C. Lin, and L. S. Li, Science 259, 59-63 (1993).Google Scholar
4 Jones, D. M., Smith, J. R., Huck, W. T. S., and Alexander, C., Adv. Mater. 14, 11301134 (2002); J. Klein, E. Kumacheva, D. Mahalu, D. Perahia, and L. J. Fetters, Nature 370, 634-636 (1994); J. W. Park and E. L. Thomas, J. Am. Chem. Soc. 124, 514-515 (2002); N. L. Jeon, I. S. Choi, G. M. Whitesides, N. Y. Kim, P. E. Laibinis, Y. Harada, K. R. Finnie, G. S. Girolami, and R. G. Nuzzo, Appl. Phys. Lett. 75, 4201-4203 (1999).Google Scholar
5 Fu, D., Weng, L.T., Du, B., Tsui, O. K. C., and Xu, B., Adv. Mater. 14, 339343 (2002)Google Scholar
6 Trnka, T. M. and Grubbs, R. H., Acc. Chem. Res. 34, 1829 (2001); S. T. Nguyen, L. K. Johnson, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc. 114, 3974-3975 (1992); R. R. Schrock, Acc. Chem. Res. 23, 158-165 (1990).Google Scholar
7 Xia, Y. N., Qin, D., and Yin, Y. D., Curr. Opin. Colloid Interface Sci. 6, 5464 (2001)Google Scholar
8 Qin, D., Xia, Y., Xu, B., Yang, H., Zhu, C., and Whitesides, G. M., Adv. Mater. 11, 14331437 (1999)Google Scholar
9 Xia, Y. N. and Whitesides, G. M., Angew. Chem. Int. Ed. 37, 551575 (1998)Google Scholar
10 Xia, Y. N., Mrksich, M., Kim, E., and Whitesides, G. M., J. Am. Chem. Soc. 117, 95769577 (1995)Google Scholar
11 Chiu, D. T., Pezzoli, E., Wu, H. K., Stroock, A. D., and Whitesides, G. M., Proc. Natl. Acad. Sci. USA 98, 29612966 (2001)Google Scholar