Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T11:41:56.778Z Has data issue: false hasContentIssue false

Thermal Stabilization and Crystallization of Nanometric Particles of Si-C-N Produced by RF-Plasma Enhanced Chemical-Vapor-Deposition

Published online by Cambridge University Press:  17 March 2011

Gregorio Viera
Affiliation:
GRM, Dept. de Física, Universitat de Girona, E17071 Girona, Spain
Enric Bertran
Affiliation:
GRM, Dept. de Física, Universitat de Girona, E17071 Girona, Spain
Mari C. Polo
Affiliation:
GRM, Dept. de Física, Universitat de Girona, E17071 Girona, Spain
Enric Garcia-Caurel
Affiliation:
GRM, Dept. de Física, Universitat de Girona, E17071 Girona, Spain
Jordi Farjas
Affiliation:
GRM, Dept. de Física, Universitat de Girona, E17071 Girona, Spain
Pere Roura
Affiliation:
FEMAN, Dep. Física Aplicada i Òptica, Universitat de Barcelona. E08028 Barcelona, Spain
Get access

Abstract

Nanoparticles of Si-alloys were grown at room temperature in a RF-PECVD process from mixtures of SiH4, CH4 and NH3. Quasi-monodisperse nanoparticles were produced in conditions of fast particle development. Among the different conditions for particle formation, we chose moderate low pressure (below 100Pa) and RF-power lower than 200W in all cases. The particle size was controlled through the modulation of the RF power supplied to the discharge. A post-thermal treatment at 800-900°C was used to eliminate the hydrogen of the particles and to stabilize them against environmental oxidation. To study the thermal crystallization of the particles, various thermal-treatments were used. The annealing of these particles at 1400°C for one hour under Ar or N2 led to different results depending on the composition of the samples as revealed by HRTEM and electron-diffraction analysis: SiC particles showed a marked internal crystallization; SiCN particles developed nanocrystals embedded in their amorphous matrix; Si particles crystallized in diamond-like silicon when annealed in Ar, whereas long whiskers of the α-Si3N4 phase, 50-200nm wide, grew from the particles in N2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Longeaud, C., Kleider, J.P., Cabarrocas, P. Roca i, Hamma, S., Meaudre, R., Meaudre, M., J. Non-Cryst. Sol., 230, 96 (1998)Google Scholar
2. Roca i Cabarrocas, P., Mater. Res. Soc. Symp. Proc., 507, 855 (1998)Google Scholar
3. Bertran, E., Sharma, S.N., Viera, G., Costa, J., Cabarrocas, P. St'ahel y P. Roca i, J. Mater. Res., 13, 2476 (1998)Google Scholar
4. Viera, G., Cabarrocas, P. Roca i, Costa, J., Martinez, S., Bertran, E., MRS Symp. Proc., 507, 933 (1998)Google Scholar
5. Cabarrocas, P. Roca i, Hamma, S., Sharma, S.N., Viera, G., Bertran, E., Costa, J., J. Non-Cryst. Sol., 227–230, 871 (1998)Google Scholar
6. Rittner, M.N., Abraham, T., JOM-Journal of the minerals metals & materials society, 50, Iss 1, 36 (1998)Google Scholar
7. Skandan, G., Mater. Res. Soc. Symp. Proc., 501, 351 (1998)Google Scholar
8. Howling, A.A., Dorier, J.-L. and Hollenstein, Ch., Appl. Phys. Lett., 62, 1341 (1993)Google Scholar
9. Schweigert, V.A., Schweigert, I.V., J. Phys. D: Appl. Phys., 29, 655 (1996)Google Scholar
10. Viera, G., Andújar, J.L., Sharma, S.N., Bertran, E., Diamond Rel. Mater., 7, 407 (1998)Google Scholar
11. Viera, G., García-Caurel, E., Costa, J., Andújar, J.L., Bertran, E., Applied Surface Science, 144–145, 702 (1999)Google Scholar
12. Viera, G., Andújar, J.L., Sharma, S.N., Bertran, E., Surf. Coat. Technol., 101, 5558 (1998)Google Scholar
13. Viera, G., Costa, J., Roura, P., Bertran, E., Diamond Rel. Mat., 8, 364368 (1999)Google Scholar
14. Courteille, C., Hollenstein, Ch., Dorier, J.-L., Gay, P., Schwarzenbach, W., Howling, A.A., Bertran, E., Viera, G., Martins, R., Macarico, A., J. Appl. Phys. 80, 2069 (1996)Google Scholar
15. Viera, G., García-Caurel, E., Andújar, J.L., Bertran, E., in Ceramics: Getting into the 2000's (ed. Vincenzini, P., Advanced in Science and Technology, V14, 1999), p. 219 Google Scholar
16. Viera, G., Sharma, S.N., Andújar, J.L., Zhang, R.Q., Costa, J., Bertran, E., Vacuum, 52, 183 (1999)Google Scholar
17. Edelstein, A.S., Cammarata, R.C., (eds.), Nanomaterials: synthesis and applications, (IOP Publishing Bristol (UK), Philadelphia (USA) 1996) pp.57 Google Scholar
18. Ho, P., Buss, R.J., Loehman, R.E., J. Mater. Res., 4(4), 873 (1989)Google Scholar
19. Musset, E., Cauchetier, M., Luce, M., Herlin, N., Bouissou, S, Dhalluin, C., Hommel, H., Legrand, A.P., Am. Ceram. Soc., 51, 139 (1995)Google Scholar