Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T09:13:56.636Z Has data issue: false hasContentIssue false

Thermal Stability of GaN Investigated by Raman Scattering

Published online by Cambridge University Press:  15 February 2011

M. Kuball
Affiliation:
H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 ITL, UNITED KINGDOM
F. Demangeot
Affiliation:
(2)Laboratoire de Physique des Solides de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse Cedex, France
J. Frandon
Affiliation:
(2)Laboratoire de Physique des Solides de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse Cedex, France
M.A. Renucci
Affiliation:
(2)Laboratoire de Physique des Solides de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse Cedex, France
N. Grandjean
Affiliation:
CRHEA-CNRS, Rue Bernard Gregory, F-06560 Valbonne, France
O. Briot
Affiliation:
GES-CNRS, CC074 Université Montpellier II, Place E.Bataillon F-34095 Montpellier Cedex 5, France
Get access

Abstract

We have investigated the thermal stability of GaN using Raman scattering. Noninvasive optical monitoring of the degradation of GaN during high-temperature processing has been demonstrated. GaN samples grown by molecular-beam epitaxy (MBE) and metalorganic vapor phase epitaxy (MOCVD) were studied. Characteristic features in the Raman spectrum identify three thermal stability regimes: (1) annealing below 900°C does not affect the GaN Raman spectrum; (2) annealing between 900°C and 1000°C results in the appearance of disorder-induced Raman scattering between the E2 and A1(LO) phonon; (3) annealing at temperatures higher than 1000°C gives rise to distinct Raman modes at 630 cm-1, 656 cm-1 and 770 cm-1. The evolution of the Raman spectrum of GaN with increasing annealing temperature is discussed in terms of disorder-induced Raman scattering. We find clear indications for an interfacial reaction between GaN and sapphire for annealing temperatures higher than 1000°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., Chocho, K., Appl. Phys. Lett. 72, 211 (1998).Google Scholar
[2] Song, Y.-K., Kuball, M., Nurmikko, A.V., Bulman, G.E., Doverspike, K., Shappard, S.T., Weeks, T.W., Leonard, M., Kong, H.S., Dieringer, H., and Edmonds, J., Appl. Phys. Lett. 72, 1418 (1998).Google Scholar
[3] Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar
[4] Khan, M.A., Chen, Q., Skogman, R.A., and Kuznia, J.N., Appl. Phys. Lett. 66, 2046 (1995).Google Scholar
[5] Kuball, M., Demangeot, F., Frandon, J., Renucci, M.A., Massies, J., Grandjean, N., Aulombard, R.L., and Briot, O., Appl. Phys. Lett. 73, 960 (1998).Google Scholar
[6] Zolper, J.C., Crawford, M. Hagerott, Howard, A.J., Ramer, J., and Hersee, S.D., Appl. Phys. Lett. 68, 200 (1996).Google Scholar
[7] Hong, J., Lee, J.W., MacKenzie, J.D., Donovan, S.M., Abernathy, C.R., Pearton, S.J., and Zolper, J.C., Semicond. Sci. Technol. 12, 1310 (1997).Google Scholar
[8] Siegle, H., Kaczmarczyk, G., Filippidis, L., Litvinchuk, A.P., Hoffmann, A., and Thomsen, C., Phys. Rev. B 55, 7000 (1997).Google Scholar
[9] Azuhata, T., Matsunaga, T., Shimada, K., Yoshida, K., Sota, T., Suzuki, K., and Nakamura, S., Physica B 219&220, 493 (1996).Google Scholar
[10] Lin, M.E., Sverdiov, B.N., and Morkoç, H., Appl. Phys. Lett. 63, 3625 (1993).Google Scholar
[11] Demangeot, F., Frandon, J., Renucci, M.A., Briot, O., Gil, B., Aulombard, R.-L., MRS Internet J. Nitride Semicond. Res. 1, 23 (1996).Google Scholar
[12] Barker, A. S. Jr, Phys. Rev. 132, 1474 (1963).Google Scholar
[13] Grabner, L., J. Appl. Phys. 49, 580 (1978).Google Scholar