Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-04-30T18:44:50.877Z Has data issue: false hasContentIssue false

Theory of electronic transport in semiconductor nanostructures.

Published online by Cambridge University Press:  17 March 2011

Y.M. Niquet
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département ISEN, Boîte Postale 69, F-59652 Villeneuve d'Ascq Cedex, France
C. Delerue
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département ISEN, Boîte Postale 69, F-59652 Villeneuve d'Ascq Cedex, France
G. Allan
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département ISEN, Boîte Postale 69, F-59652 Villeneuve d'Ascq Cedex, France
M. Lannoo
Affiliation:
L2MP, Marseille, France
Get access

Abstract

We review the orthodox theory of single charge tunneling in a semiconductor quantum dot and we extend it to treat both single electron and hole charging effects. We analyze recent tunneling spectroscopy experiments. We show that for sufficiently large bias voltages V, both electrons and holes can tunnel into the quantum dot, leading to specific features in the I(V) curve. We present detailed simulations of the I(V) curves based a tight binding method for the electronic structure. A very good agreement is obtained with available experiments on InAs nanocrystals, allowing a complete interpretation of the spectra. Finally, we make some predictions concerning Si nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klein, D.L., Roth, R., Lim, A.K., Alivisatos, A.P., and McEuen, P., Nature 389, 699 (1997).Google Scholar
2. Banin, U., Cao, Y., Katz, D. and Millo, O., Nature 400, 542 (1999).Google Scholar
3. Austing, D.G., Honda, T., and Tarucha, S., Semicond. Sci. Technol. 11, 388 (1996).Google Scholar
4. Tarucha, S., Austing, D.G., Honda, T., Hage, R.J. Van der, and Kouwenhoven, L.P., Phys. Rev. Lett. 77, 3613 (1996).Google Scholar
5. Single Charge Tunneling, edited by Grabet, H. and Devoret, M.H. (Plenum, New York, 1992).Google Scholar
6. Averin, D. V., Korotkov, A. N., and Likharev, K. K, Phys. Rev. B 44, 6199 (1991).Google Scholar
7. Niquet, Y.-M., Delerue, C., Allan, G. and Lannoo, M., unpublished.Google Scholar
8. Niquet, Y.-M., Delerue, C., Allan, G. and Lannoo, M., Phys. Rev. B 62, 5109 (2000).Google Scholar
9. Allan, G., Niquet, Y.-M., Delerue, C., Appl. Phys. Lett. 77, 639 (2000).Google Scholar
10. Lannoo, M., Delerue, C., and Allan, G., Phys. Rev. Lett. 74, 3415 (1995).Google Scholar
11. Wang, L.W. and Zunger, A., Phys. Rev. Lett. 73, 1039 (1994).Google Scholar
12. Baron, T., Magnea, N., unpublished.Google Scholar
13. Tsybeskov, L., Grom, G.F., Fauchet, P.M., McCaffrey, J.P., Baribeau, J.-M., Lockwood, D.J., Appl. Phys. Lett. 75, 2265 (1999).Google Scholar