Skip to main content Accessibility help
×
Home

Theoretical and Experimental Analysis of the Low Dielectric Constant of Fluorinated Silica

Published online by Cambridge University Press:  17 March 2011

A. Demkov
Affiliation:
Motorola Semiconductor Products Sector, Mesa, AZ
S. Zollner
Affiliation:
Motorola Semiconductor Products Sector, Mesa, AZ
R. Liu
Affiliation:
Motorola Semiconductor Products Sector, Mesa, AZ
D. Werho
Affiliation:
Motorola Semiconductor Products Sector, Mesa, AZ
M. Kottke
Affiliation:
Motorola Semiconductor Products Sector, Mesa, AZ
R.B. Gregory
Affiliation:
Motorola Semiconductor Products Sector, Mesa, AZ
M. Angyal
Affiliation:
Motorola Semiconductor Products Sector, Mesa, AZ
S. Filipiak
Affiliation:
Motorola Semiconductor Products Sector, Mesa, AZ
G.B. Adams
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ
Get access

Abstract

Fluorinated silica has a dielectric constant lower than that of F-free SiO2 and is a potential interlayer dielectric. We investigate the F-doped SiO2 with ab-initio modeling and various characterization techniques searching to explain the dielectric constant reduction. FTIR transmission and spectroscopic ellipsometry give us information about the ionic and electronic contributions to ε. Nuclear reaction analysis and Auger spectrometry measure F composition. XPS and FTIR provide information on the atomic structure of the film. We use several cells of cristobalite to model fluorinated silica using the electronic structure theory. The ground state geometry, vibrational density of states, electronic band structure, and Born effective charges are analyzed. The calculations suggest that it is the ionic component of the dielectric constant that is mostly effected by the F incorporation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Lucovsky, G. and Yang, H., J. Vac. Sci. Technol. A 15, 1509 (1997).Google Scholar
2. Grill, A. et al. , in Low-Dielectric Constant Materials II, edited by Lagendijk, A., Treichel, H., Uram, K., and Jones, A. (Mater. Res. Soc., Pittsburgh, 1996), p. 155.Google Scholar
3. Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B.F., and Stucky, G.D., Adv. Mater. 10, 1380 (1998).10.1002/(SICI)1521-4095(199811)10:16<1380::AID-ADMA1380>3.0.CO;2-83.0.CO;2-8>CrossRef3.0.CO;2-8>Google Scholar
4. Yu, K.C. et al. , in Low-Dielectric Constant Materials V, Mater. Res. Soc. Proc. 565 (in print).Google Scholar
5. Wetzel, J. et al., in Low-Dielectric Constant Materials, edited by Lu, T.-M., Murarka, S.P., Kuan, T.-S., and Ting, C.H. (Mater. Res. Soc., Pittsburgh, 1995) p.217.Google Scholar
6. Han, S.M. and Aydil, E., J. Vac. Sci. Technol. A 15, 2893 (1997).10.1116/1.580845CrossRefGoogle Scholar
7. Han, S.M. and Aydil, E., J. App. Phys. 83, 2172 (1998).10.1063/1.366955CrossRefGoogle Scholar
8. Hasegawa, S., Tsukaoka, T., Inokuma, T., Kurata, Y., J. Non-Crystalline Solids 240, 154 (1998).10.1016/S0022-3093(98)00712-1CrossRefGoogle Scholar
9. Xu, Y.-N. and Ching, W.Y., Phys. Rev. B 44, 11048 (1991).10.1103/PhysRevB.44.11048CrossRefGoogle Scholar
10. Demkov, A.A., Ortega, J., Sankey, O.F., and Grumbach, M., Phys Rev. B 52, 1618 (1995).10.1103/PhysRevB.52.1618CrossRefGoogle Scholar
11. Sankey, O.F., Demkov, A.A., Windl, W., Fritsch, J.H., Lewis, J.P., Fuentes-Cabrera, M., Int. J. Quant. Chem. 69, 327 (1998).10.1002/(SICI)1097-461X(1998)69:3<327::AID-QUA11>3.0.CO;2-#3.0.CO;2-#>CrossRef3.0.CO;2-#>Google Scholar
12. Kim, K., Kwon, D.H., Nallapati, G., and Lee, G.S., J. Vac. Sci. Technol. A 16, 1509 (1998).10.1116/1.581178CrossRefGoogle Scholar
13. Yoshimary, M., Koizumi, S., and Shimokawa, K., J. Vac. Sci. Technol. A 15, 2908 (1997).10.1116/1.580884CrossRefGoogle Scholar
14. Cerius2 software, Molecular Simulations, Inc., San Diego, CA. Google Scholar
15. Demkov, A., Liu, R., Zollner, S., Werho, D., Kottke, M., Gregory, R.B., Angyal, M., Filipiak, S., McIntyre, L.C., and Ashbaugh, M.D., Mat. Res. Soc. Symp. Proc. (in print).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-9l59n Total loading time: 1.127 Render date: 2021-01-22T20:39:26.596Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Theoretical and Experimental Analysis of the Low Dielectric Constant of Fluorinated Silica
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Theoretical and Experimental Analysis of the Low Dielectric Constant of Fluorinated Silica
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Theoretical and Experimental Analysis of the Low Dielectric Constant of Fluorinated Silica
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *