Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-20T20:56:08.287Z Has data issue: false hasContentIssue false

Tem Study of Porous Silicon Fabricated from N- and P-Type Doped Polycrystalline Films

Published online by Cambridge University Press:  15 February 2011

L. Haji
Affiliation:
Groupe de Microélectronique et Visualisation, Université de Rennes 1; TUT de Lannion, Boîte Postale 150; 22302 Lannion Cedex, France
Y. Le Thomas
Affiliation:
Groupe de Microélectronique et Visualisation, Université de Rennes 1; TUT de Lannion, Boîte Postale 150; 22302 Lannion Cedex, France
F. Chane Che Lai
Affiliation:
Groupe de Microélectronique et Visualisation, Université de Rennes 1; TUT de Lannion, Boîte Postale 150; 22302 Lannion Cedex, France
P. Joubert
Affiliation:
Groupe de Microélectronique et Visualisation, Université de Rennes 1; TUT de Lannion, Boîte Postale 150; 22302 Lannion Cedex, France
Get access

Abstract

The formation of porous silicon (PS) from n/p, n+/p and p+/n structures carried from polycrystalline silicon films (poly-Si) deposited on single crystal silicon (c-Si) substrates was studied by cross-sectional transmission electron microscopy. Our results clearly show that the pore formation in such structures involve the extended defects of the poly-Si film. The role played by these defects depends on the doping type and level, and on whether the anodization is performed under illumination or not.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Canham, L.T., Appl. Phys. Lett. 57, 1046, (1990).Google Scholar
2.Richter, A., Steiner, P., Kozlowsky, F. and Lang, W., IEEE Electron. Device Lett. 12, 691 (1991).Google Scholar
3.Koshida, N. and Koyama, H., Appl. Phys. Lett. 60, 192, (1992).Google Scholar
4.Steiner, P., Kozlowsky, F. and Lang, W., Appl. Phys. Lett. 62, 2700, (1993).Google Scholar
5.Loni, A., Simons, A.J., Cox, T.I., Calcott, P.D.J. and Canham, L.T., Electron. Lett. 31, 1288 (1995).Google Scholar
6.Linros, J. and Lalic, N., Appl. Phys. Lett. 66, 3048, (1995).Google Scholar
7.Tsykeskov, , Duttagupta, S.P., Hirschman, K.D. and Fauchet, M., Appl. Phys. Lett. 68, 2058, (1996).Google Scholar
9.Chane Ché Laï, F., Beau, C., Briand, D. and Joubert, P., Appl. Surf. Sci. 102, 399 (1996).Google Scholar
10.Sarret, M., Liba, A., Le Bihan, F., Joubert, P., and Fortin, B., J. Appl. Phys. 76, 5492 (1994).Google Scholar
Foli, H.H., Appl. Phys. A, 53, 8, (1991).Google Scholar
12.Guyader, P., Joubert, P., Guendouz, M., Beau, C. and Sarret, M., Appl. Phys. Lett. 65, 1787, (1995).Google Scholar