Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-16T09:33:17.150Z Has data issue: false hasContentIssue false

Synthesis of Soi Materials Using Plasma Immersion Ion Implantation

Published online by Cambridge University Press:  03 September 2012

Paul K. Chu*
Affiliation:
Department of Physics & Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
Get access

Abstract

As the dimensions of integrated circuits shrink towards the deep sub-micromeLer regime, silicon-on-insulator is regarded to be more favorable than silicon substrates. The biggest drawback of SOI is cost which will become more critical for next generation 300-nm silicon wafers. Plasma immersion ion implantation (PIII) provides a viable alternative for the fabrication of SOI wafers as the processing time is very short and independent of wafer size. Pill is being employed to synthesize two types of SOI materials, SPIMOX (Separation by Plasma IMplantation of OXygen) and bonded SOL. In SPIMOX fabrication, both oxygen and water plasmas have been attempted and the results indicate that a discrete buried oxide layer can indeed be formed. In the case of wafer bonding, PIII is utilized for smart-cutting, a process in which implanted hydrogen or helium causes the bonded wafer to crack along the plane thereby making one side of the wafer recyclable. This article reviews the work done and current status of SOI fabrication by PIII.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vogt, H., Burbach, G., Belz, J., and Zimmer, G., Solid Sate Technol., 34(2), p. 79 (1991).Google Scholar
2. Colinge, J.-P., Silicon-on-Insulator Technology: Materials to VLSI, Kluwer Academic Publisher, Boston, MA, 1991.Google Scholar
3. Dunn, P. N., Solid State Technol., 36(10), p. 32 (1993).Google Scholar
4. Tsuchiya, T., Ohno, T., and Kado, Y., in Cristoloveanu, S. (Ed.), Silicon-on-Insulator Technology and Devices, Electrochemical Society, Pennington, NJ, p. 401 (1994).Google Scholar
5. Cheng, Y. H. and Wang, Y. Y., Int. Workshop on VLSI Process and Device Modeling, Japan, p. 102 (1991).Google Scholar
6. Conrad, J. R., Radtke, J. L., Dodd, R. A., Worzala, F. J., and Tran, N. C., J. Appl. Phys., 62, p. 4591 (1987).Google Scholar
7. Mantese, J. V., Brown, I. G., Cheung, N. W., and Collins, G. A., MRS Bulletin, 21(8), p. 52 (1996).Google Scholar
8. Mizuno, B., Nakayama, I., Takase, M., Nakaoka, H., and Kubota, M., Surf. Coat. Technol., 85, p. 51 (1996).Google Scholar
9. Qin, S., Bernstein, J. D., Chan, C., Zhao, J., and Denholm, S., Surf. Coat. Technol., 85, p. 56 (1996).Google Scholar
10. Chu, P. K., Chan, C., and Cheung, N. W., Semiconductor Int., 6, p. 165 (1996).Google Scholar
11. Chu, P. K., Qin, S., Chan, C., Cheung, N. W., and Larson, L. A., to be published in Mat. Sci. & Eng.: Reports.Google Scholar
12. Min, J., Chu, P. K., Cheng, Y. C., Liu, J. B., Iyer, S., and Cheung, N. W., Mat. Chem & Phys., 40, p. 219 (1995).Google Scholar
13. Liu, J. B., Iyer, S. S. K., Hu, C. M., Cheung, N. W., Gronsky, R., Min, J., and Chu, P., Appl. Phys. Lett., 67(16), p. 2361 (1995).Google Scholar
14. Min, J., Chu, P. K., Cheng, Y. C., Liu, J. B., Iyer, S. S. K., and Cheung, N. W., Surf. Coat. Technol., 85, p. 60 (1996).Google Scholar
15. Liu, J. B., Iyer, S. S. K., Min, J., Chu., P. Gronsky, R., Hu, C., and Cheung, N. W., Proc. IEEE Int. SOI Conf, Tucson, Arizona, October 1995, p. 166 (1995).Google Scholar
16. Bruel, M M. et al., Proc. IEEE Int. SOI Conf., Tucson, Arizona, October 1995, p. 178 (1995).Google Scholar
17. Lu, X., Iyer, S. S. K., Min, J., Fan, Z., Liu, J. B., Chu, P. K., Hu, C., and Cheung, N. W., Proc. IEEE Int. SOI Conf., Fort Meyers, Florida, October 1 – 3, 1996, p. 48 (1996)Google Scholar