Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-9pqtr Total loading time: 0.553 Render date: 2021-04-14T20:10:12.163Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Surface States Influence in Al Schottky Barrier of Ge Nanowires

Published online by Cambridge University Press:  18 March 2013

Hanay Kamimura
Affiliation:
Departamento de Física, Universidade Federal de São Carlos CEP 13565-905, CP 676, São Carlos, São Paulo, Brasil
Ricardo A. Simon
Affiliation:
Universidade Tecnológica Federal do Paraná - Campus Apucarana
Olivia M. Berengue
Affiliation:
Universidade Estadual Paulista - Unesp
Cleber A. Amorim
Affiliation:
Departamento de Física, Universidade Federal de São Carlos CEP 13565-905, CP 676, São Carlos, São Paulo, Brasil
Adenilson J. Chiquito
Affiliation:
Departamento de Física, Universidade Federal de São Carlos CEP 13565-905, CP 676, São Carlos, São Paulo, Brasil
Edson R. Leite
Affiliation:
Laboratório Interdisciplinar de Eletroquímica e Cerâmicas, Departamento de Química, Universidade Federal de São Carlos, CEP 135665-905, CP 676, São Carlos, São Paulo, Brasil
Corresponding
E-mail address:
Get access

Abstract

Aiming the understanding of how the application to devices is affected by the presence of oxygen in semiconductor nanostructures, Al/Ge-nanowires Schottky devices were fabricated without any previous treatment to remove the native oxide from nanowires' surface, originated during the growth process. Electronic transport properties of these devices were investigated and it was observed that interface states originated from the disordered oxide layer effectively pinned the Fermi level at the Ge surface, affecting Schottky barriers. Numerical calculations were made to complement this study agreeing with experiments.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below.

References

Wu, Y. and Yang, P., Chem. Mater.12, 605 (2000).CrossRef
Lauhon, L. J., Gudiksen, M. S., Wang, C. L. and Lieber, C. M., Nature 420, 57 (2002).CrossRef
Hayden, O., Greytak, A. B. and Bell, D. C., Adv. Mater. 17, 701 (2005).CrossRef
Tutuc, E., Appenzeller, J., Reuter, M. C. and Guha, S., Nano Lett. 6, 2070 (2006).CrossRef
Xiang, J., Lu, W., Hu, Y. J., Wu, Y., Yan, H. and Lieber, C. M., Nature 441, 489 (2006).CrossRef
Hu, Y. J., Churchill, H. O. H., Reilly, D. J., Xiang, J., Lieber, C. M. and Marcus, C. M., Nat. Nanotechnol. 2, 622 (2007).CrossRef
Yan, H., Choe, H. S., Nam, S. W., Hu, Y., Das, S., Klemic, J. F., Ellenbogen, J. C. and Lieber, C. M., Nature 240, 470 (2011).
Mott, N. F., Metal-Insulator Transitions, 2nd ed. (Taylor and Francis, London, 1990).CrossRefGoogle Scholar
Kamimura, H., Araujo, L. S., Berengue, O. M., Amorim, C. A., Chiquito, A. J. and Leite, E. R., Physica E 44, 1776 (2011).CrossRef
Lanfredi, A. J. C., Geraldes, R. R., Berengue, O. M., Leite, E. R. and Chiquito, A. J., J. Appl. Phys. 105, 023708 (2009).CrossRef
Schricker, A. D., Joshi, S. V., Hanrath, T., Banerjee, S. K. and Korgel, B. A., J. Phys. Chem. B 110, 6816 (2006).CrossRef
Berengue, O. M., Simon, R. A., Leite, E. R. and Chiquito, A. J., J. Phys. D. 44, 215405 (2011).CrossRef
Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964)CrossRef
Joint Committee on Powder Difraction Standards (JCPDS), Card No. 4–545
Wang, D., Chang, Y., Wang, Q., Cao, J., Farmer, D. B., Gordon, R. G. and Dai, H., J. Am. Chem. Soc. 37, 1160 (2004).
Hanrath, T. and Korgel, B. A., J. Am. Chem. Soc. 126, 15466 (2004).CrossRef
Wang, D., Wang, Q., Javey, A., Tu, R., Dai, H., Kim, H., McIntyre, P. C., Krishnamohan, T. and Saraswat, K. C., Appl. Phys. Lett. 83, 12 (2003).
Yu, B., Sun, X. H., Calebotta, G. A., Dholakia, G. R. and Meyyappan, M., J. Cluster Sci. 17, 579 (2006).CrossRef
Zhang, Z., Yao, K., Liu, Y., Jin, C., Liang, X., Chen, Q., Peng, L.-M., Adv. Funct. Mater. 17, 2478 (2007).CrossRef
Bardeen, J., Phys. Rev. 71, 717 (1947).CrossRef
Lu, G. N., Barret, C. Neffati, T., Solid-State Electron. 33, 1 (1990).CrossRef
Chiquito, A. J., Amorim, C. A., Berengue, O. M., Araujo, L. S., Bernardo, E. P., Leite, E. R., J. Phys.: Condens. Matter 24, 225303 (2012).
Nishimura, T., Kita, K., Toriumi, A., Appl. Phys. Lett. 91, 123123 (2007).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 14th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Surface States Influence in Al Schottky Barrier of Ge Nanowires
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Surface States Influence in Al Schottky Barrier of Ge Nanowires
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Surface States Influence in Al Schottky Barrier of Ge Nanowires
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *