Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-13T02:46:44.816Z Has data issue: false hasContentIssue false

Surface Investigations of Germanium Chemical Vapor Deposition on Silicon

Published online by Cambridge University Press:  22 February 2011

C. Michael Greenlief
Affiliation:
Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211.
Debra-Ann Klug
Affiliation:
Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211.
Wei Du
Affiliation:
Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211.
Lori A. Keeling
Affiliation:
Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211.
Get access

Abstract

The adsorption and decomposition of several Ge-containing compounds on Si(100) have been investigated with the intent of elucidating the surface processes leading to the deposition of epitaxial Ge films from these gaseous sources. Exposure of digermane, Ge2H6/ to Si(100) at 110 K results in molecular adsorption and ab initio calculations are used to help interpret the low temperature ultraviolet photoelectron spectrum. Diethylgermane, GeH2Et2, chemisorbs dissociatively on Si(100) at 110 K. The adsorption products are GeH2 and adsorbed ethyl groups. Large exposures of GeH2Et2 result in the formation of a physisorbed layer of molecular GeH2Et2 on top of the dissociated layer. The surface ethyl groups thermally decompose near 670 K via a β-hydride elimination reaction evolving C2H4 into the gas phase. The interactions of Ge2H6 and GeH2Et2 with Si(100) are discussed and compared to similar experiments with GeH4 as the Ge-containing gas source.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meyerson, B. S., Uram, K. J., and LeGoues, F. K., Appl. Phys. Lett. 53, 2555 (1988).Google Scholar
2. Racanelli, M. and Greve, D. W., Appl. Phys. Lett. 56, 2524 (1990).Google Scholar
3. Klug, D. A., Du, W., and Greenlief, C. M., J. Vac. Sci. Technol A, submitted.Google Scholar
4. Klug, D. A., Du, W., and Greenlief, C. M., Chem. Phys. Lett., 197, 352 (1992).Google Scholar
5. Beltram, G., Fehlner, T. P., Mochida, K., and Kochi, J. K., J. Electr. Spectros. Rel. Phenom. 18, 153 (1980).Google Scholar
6. Keeling, L. A. and Greenlief, C. M., unpublished results.Google Scholar
7. Dillon, A. C., Robinson, M. B., George, S. M., and Roberts, D. A., Surf. Sci., submitted.Google Scholar
8. Coon, P. A., Wise, M. L., Walker, Z. H., George, S. M., and Roberts, D. A., Appl. Phys. Lett. 60, 2002 (1992).Google Scholar
9. Dillon, A. C., Robinson, M. B., Han, M. Y., and George, S. M., J. Electrochem. Soc. 139, 537 (1992).Google Scholar
10. Coon, P. A., Wise, M. L., Dillon, A. C., Robinson, M. B., and George, S. M., J. Vac. Sci. Technol. B 10, 221 (1992).Google Scholar