Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T18:45:02.288Z Has data issue: false hasContentIssue false

Surface Electromagnetic Waves in Laser Material Interactions

Published online by Cambridge University Press:  15 February 2011

D. J. Ehrlich
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, Massachusetts 02173
S. R. J. Brueck
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, Massachusetts 02173
J. Y. Tsao
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, Massachusetts 02173
Get access

Abstract

Transient ripple formation in pulsed laser annealing of semiconductor materials is shown to arise from amplified surface polariton scattering. The permanent ripple patterns are frozen in after transverse thermal and material diffusion during the laser-annealing process. The model is in good agreement with time-resolved measurements of the ripple formation in 1.06−µm laser annealing of Ge. Dispersion of the ripple wavevector in the UV spectral region is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was supported by the Department of the Air Force, in part with specific support from the Air Force Office of Scientific Research, by the Defense Advanced Research Projects Agency, and by the Army Research Office.

References

REFERENCES

1.Koo, J. C. and Slusher, R. E., Appl. Phys. Lett. 28, 614 (1976).Google Scholar
2.Oron, M. and Sorenson, G., Appl. Phys. Lett. 35, 782 (1978).Google Scholar
3.Fouchet, P. and Siegman, A. E., Appl. Phys. Lett. 40, 824 (1982).Google Scholar
4.Young, J. F., Sipe, J. E., Preston, J. S. and Van Driel, H. M., Appl. Phys. Lett. 41, 261 (1982).Google Scholar
5.Ehrlich, D. J., Osgood, R. M. Jr. and Deutsch, T. F., Appl. Phys. Lett. 39, 957 (1981).Google Scholar
6.Osgood, R. M. Jr. and Ehrlich, D. J., Optics Lett. 7, 385 (1982).Google Scholar
7.Brueck, S. R. J. and Ehrlich, D. J., Phys. Rev. Lett. 48, 1678 (1982).Google Scholar
8.Ehrlich, D. J., Brueck, S. R. J. and Tsao, J. Y., Appl. Phys. Lett. 41, 630 (1982).Google Scholar
9.Surko, C. M., Simons, A. L., Auston, D. H., Golovchenko, J. A., Slusher, R. E. and Venkatesan, T. N. C., Appl. Phys. Lett. 34, 635 (1979).Google Scholar
10.Hodgson, J. N., Phil. Mag. 6, 509 (1961).Google Scholar
11.Abraham, A., Tauc, J. and Velicky, B., Phys. Stat. Sol. 3, 767 (1963).Google Scholar
12.Johnson, P. B. and Christy, R. W., Phys. Rev. B 6, 4370 (1972).Google Scholar