Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-q7jt5 Total loading time: 0.784 Render date: 2021-02-26T21:59:23.718Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Subsurface Damage Profile Characterization of Si Wafers with Uv/Millimeter-Wave Technique and Light Scattering Topography

Published online by Cambridge University Press:  10 February 2011

Takeo Katoh
Affiliation:
Mitsubishi Materials Corp., Silicon Research Center, 1–297 Kitabukuro-cho, Omiya, Saitama, 330–8508, JAPAN, E-mail: tkatoh@mmc.co.jp
Hideyuki Kondo
Affiliation:
Mitsubishi Materials Corp., Silicon Research Center, 1–297 Kitabukuro-cho, Omiya, Saitama, 330–8508, JAPAN, E-mail: tkatoh@mmc.co.jp
Yoh-Ichiro Ogita
Affiliation:
Kanagawa Inst. Tech., Dept. Electrical & Electronic Engineering, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243–0292, JAPAN, E-mail: tkatoh@mmc.co.jp
Ken-Ichi Kobayashi
Affiliation:
Kanagawa Inst. Tech., Dept. Electrical & Electronic Engineering, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243–0292, JAPAN, E-mail: tkatoh@mmc.co.jp
Masaki Kurokawa
Affiliation:
Kanagawa Inst. Tech., Dept. Electrical & Electronic Engineering, 1030 Shimo-Ogino, Atsugi, Kanagawa, 243–0292, JAPAN, E-mail: tkatoh@mmc.co.jp
Corresponding
E-mail address:
Get access

Abstract

We have characterized subsurface damage profiles of hydrogen-ion implanted silicon wafers by using a non-contact UV/Millimeter-Wave Technique and Light Scattering Topography (LST). A subsurface damage profile that was less than one micrometer was controlled by chemical mechanical polishing after hydrogen-ion implantation. On the area with the subsurface damage, the Photoconductivity Amplitude (PCA) signals measured by the UV/Millimeter-Wave Technique drastically weakened and the haze values measured by LST increased. A clear correlation has been found between the peak depth of the subsurface damage and the haze value. The spectral analyses of the surface images obtained by Atomic Force Microscopy (AFM) were carried out in order to separate the influences of surface micro roughness and subsurface damage on the haze value. The contribution of subsurface damage to the haze value can be formulated as the convolution of the damage profile and the transparency function of the incident laser in silicon crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Ryuta, J., Morita, E., Tanaka, T. and Shimanuki, Y., Jpn. J. Appl. Phys., 29, L1947(1990)CrossRefGoogle Scholar
2. Kitano, T., Ishikawa, T., Matsui, J., Akimoto, K., Mizuki, J. and Kawase, Y., Jpn. J. Appl. Phys., 26, L108(1987)CrossRefGoogle Scholar
3. Katoh, T., Nakajima, K., Harada, T., Shimazu, A., Shiraki, H., Kondo, H., Shimanuki, Y., Matsui, J., Kagoshima, Y. and Tsusaka, Y., SPring-8 User Experiment Report, 3, 301(1999)Google Scholar
4. Ogita, Y., Semidonc, Sci. Tech., 7–1, A175(1992).Google Scholar
5. Ogita, Y., Tate, N., Masumura, H., Miyazaki, M. and Yakushiji, K., Recombination Lifetime Measurements in Silicon, ed. Gupta, D. C., Bacher, F. R. and Hughes, W. M. (West Conshohocken, PA, 1998) pp. 168182 CrossRefGoogle Scholar
6. Ogita, Y., Nakano, M. and Masumura, H., Mater. Res. Soc., 378, 591(1995)CrossRefGoogle Scholar
7. Ogita, Y., Hosoda, Y. and Miyazaki, M., Mater. Res. Soc., 477, 209(1997)CrossRefGoogle Scholar
8. Ogita, Y., Kobayashi, K. and Daio, H., Mater. Res. Soc., 566, 261(2000)CrossRefGoogle Scholar
9. Katoh, T., Kondo, H., Takaishi, K., Tominaga, M., Ogita, Y., Kobayashi, K. and Gan-nen, Y., Extended Abstracts of the 59th Fall Meeting, The Japan Society of Appl. Phys., No. 2, 690(1998).Google Scholar
10. Steigmeier, E. F. and Auderset, H., Appl. Phys. A50, 531(1990).CrossRefGoogle Scholar
11. Abe, T., Steigmeier, E. F., Hagleitner, W. and Pidduck, A. J., Jpn. J. Appl. Phys. 31, 721(1992).CrossRefGoogle Scholar
12. Teichert, C., MacKay, J. F., Savage, D. E., Lagally, M. G., Brohl, M. and Wagner, P., Appl. Phys. Lett., 66, 2346(1995)CrossRefGoogle Scholar
13. Bristow, T. C. and Arckellian, K., Proc. SPIE 749, 114(1987).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Subsurface Damage Profile Characterization of Si Wafers with Uv/Millimeter-Wave Technique and Light Scattering Topography
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Subsurface Damage Profile Characterization of Si Wafers with Uv/Millimeter-Wave Technique and Light Scattering Topography
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Subsurface Damage Profile Characterization of Si Wafers with Uv/Millimeter-Wave Technique and Light Scattering Topography
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *