Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-06T02:30:17.318Z Has data issue: false hasContentIssue false

Studying Ionic Conductivity with Diffraction Techniques an Application to laF3

Published online by Cambridge University Press:  21 February 2011

Andreas Belzner
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Heinz Schulz
Affiliation:
Institut für Kristallographie der Universität München, Theresienstrasse 41, 8000 München 2, Federal Republic of Germany
Get access

Abstract

The LaF3-structure has been reinvestigated using diffraction data measured with twinned crystals.

LaF3 is fluoride ion conductor with essentially 3-dimensional conductivity. The conduction perpendicular to the c-axis is shown to occur on paths which include all three sets of fluorine positions in the structure and which connect symmetrically non-equivalent nearest neighbor positions only. This is confirmed by determination of anharmonic temperature factors. The temperature dependence of the harmonic thermal parameters indicates that thermal vibrations are described rather than static disorder. The magnitude of the temperature factors of fluorine is consistent with an intrinsic activation energy of 0.8 eV for fluorine conduction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Roos, A., Aalders, A.F., Schoonman, J., Arts, A.F.M., and Wijn, H.W. De, Solid State Ionics 9/10, 571 (1983).Google Scholar
2. Maximov, B. and Schulz, H., Acta Cryst. B Al, 88 (1985); A. Zalkin and D.H. Templeton, Acta Cryst. B Al, 91 (1985).Google Scholar
3. Jameson, C.B., Acta Cryst. A 38, 817 (1982).Google Scholar
4. Belzner, A., PhD thesis, Universität München, 1988.Google Scholar
5. Belzner, A. and Schulz, H. (publication in preparation).Google Scholar
6. Zucker, U.H., Perenthaler, E., Kuhs, W.F., Bachmann, R., and Schulz, H., J. Appl. Cryst. 16, 358 (1983).Google Scholar
7. Shannon, R.D., Acta Cryst. A 32, 751 (1976).Google Scholar
8. Brach, I. and Schulz, H., Solid State Ionics 125., 135 (1985); A. Rhandour, J.M. Reau, S.F. Matar, S.B. Tian, and P. Hagenmuller, Mat. Res. Bull. 20, 1309 (1985).Google Scholar
9. Zucker, U.H. and Schulz, H., Acta Cryst. A 38, 563 (1982).Google Scholar
10. Scheringer, C., Acta Cryst. A 44, 343 (1988).Google Scholar
11. Zucker, U.H. and Schulz, H., Acta Cryst. A 38, 568 (1982).Google Scholar
12. Schulz, H., Perenthaler, E. and Zucker, U.H., Acta Cryst. A 38, 729 (1982).Google Scholar
13. Lorenz, G., Frey, F., Schulz, H. and Boysen, H., (to be published in Solid State Ionics)Google Scholar
14. Flygare, W.H. and Huggins, R.A., J. Phys. Chem. Solids 34, 1199 (1973)Google Scholar
15. Schulz, H., Ann. Rev. Mater. Sci. 12, 351 (1982)Google Scholar
16. Bachmann, R. and Schulz, H., Solid State Ionics 9/10, 521 (1983)Google Scholar
17. Weppner, W., Solid State Ionics 3/4, 1 (1981)Google Scholar
18. Cava, R.J. and McWhan, D.B., Phys. Rev. Lett. 45, 2046 (1980)Google Scholar
19. Mair, S.L., Barnea, Z., Cooper, M.J. and Rouse, K.D., Acta Cryst. A 30, 806 (1974)Google Scholar
20. Bachmann, R. and Schulz, H., Acta Cryst. A 40, 668 (1984)Google Scholar