Skip to main content Accessibility help
×
Home

Study of the Oxidation of Polycrystalline SiGe: Formation of Ge Nanocrystals and their Related Luminescence

Published online by Cambridge University Press:  01 February 2011

A. C. Prieto
Affiliation:
Dpto. Física de la Materia Condensada, E.T.S.I.I., U. de Valladolid, Valladolid, Spain.
M. Avella
Affiliation:
Dpto. Física de la Materia Condensada, E.T.S.I.I., U. de Valladolid, Valladolid, Spain.
J. Jiménez
Affiliation:
Dpto. Física de la Materia Condensada, E.T.S.I.I., U. de Valladolid, Valladolid, Spain.
A. Rodríguez
Affiliation:
Dpto. Tecnología Electrónica, E.T.S.I.T., Universidad Politécnica de Madrid, Madrid, Spain.
J. Sangrador
Affiliation:
Dpto. Tecnología Electrónica, E.T.S.I.T., Universidad Politécnica de Madrid, Madrid, Spain.
T. Rodríguez
Affiliation:
Dpto. Tecnología Electrónica, E.T.S.I.T., Universidad Politécnica de Madrid, Madrid, Spain.
A. Kling
Affiliation:
Instituto Tecnológico e Nuclear, Sacavém, and Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal.
Get access

Abstract

Polycrystalline SiGe layers have been oxidized in either dry or wet atmospheres. The evolution of the growing oxides and the SiGe layer during the oxidation processes have been characterized using Raman spectroscopy, X-ray diffraction, Rutherford backscattering and Fourier transform infrared spectroscopy. Formation of Ge nanocrystals has been observed for both oxidation atmospheres. Violet luminescence emission has been observed and its relation to the oxidation processes has been studied. The luminescence is unambiguously related to the presence of these Ge nanocrystals. Since it does not exhibit quantum confinement, it must be related to defects linked to the nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Kan, E. W. H., Choi, W. K., Kim, W. K., Fitzgerald, E. A., Antoniadis, D. A.; J. Appl. Phys. 95, 3148 (2004).10.1063/1.1645639CrossRefGoogle Scholar
2 Xie, Y. X., Wee, A. T. S., Huan, C. H. A., Sun, W. X., Shen, Z. X., Chua, S. J.; Mater. Sci. Eng. B 107, 8 (2004).Google Scholar
3 Zhang, J. P., Hemment, P. L. F., Newstead, J. M., Powell, A. R., Whall, T. E., Parker, E. H. C.; Thin Solid. Films 222, 141 (1992).10.1016/0040-6090(92)90055-GCrossRefGoogle Scholar
4 Kilpatrick, S. J., Jaccodine, R. J., Thompson, P. E.; J. Appl. Phys. 93, 4896 (2003).10.1063/1.1559944CrossRefGoogle Scholar
5 Li, P. W., Liao, W. M., Lin, S. W., Chen, P. S., Lu, S. C., Tsai, M. J.; Appl. Phys. Lett. 83, 4628 (2003).10.1063/1.1631395CrossRefGoogle Scholar
6 Torschynska, T. V., Aguilar-Hernández, J., Schacht-Hernández, L., Polupan, G., Goldstein, Y., Many, A., Jedrzejewski, J., Kolobov, A.; Microelectron. Eng. 66, 83 (2003).10.1016/S0167-9317(03)00029-7CrossRefGoogle Scholar
7 Kanemitsu, Y., Uto, H., Masumoto, Y., Maeda, Y.; Appl. Phys. Lett. 61, 2187 (1992).10.1063/1.108290CrossRefGoogle Scholar
8 Olivares, J., Sangrador, J., Rodríguez, A., Rodríguez, A.; J. Electrochem. Soc. 148, C685 (2001).10.1149/1.1399277CrossRefGoogle Scholar
9 Choi, W. K., Natarajan, T., Bera, L. K., Wee, A. T. S., Liu, Y. J.; J.Appl. Phys. 91, 2443 (2002).10.1063/1.1431435CrossRefGoogle Scholar
10 Cuadras, À., Arbiol, J., Garrido, B., Morante, J. R., Rodríguez, A., Rodríguez, T.. MRS Symp. Proc. Vol. 832, F3.16 (2005).10.1557/PROC-832-F3.16CrossRefGoogle Scholar
11 Zacharias, M., Fauchet, P.M.; Appl. Phys. Lett. 71, 380 (1997).10.1063/1.119543CrossRefGoogle Scholar
12 Rebohle, L., Gebel, T., Borany, J. von, Skorupa, W., Helm, M., Pacifici, D., Frano, G., Priolo, F.; Appl. Phys. B 74, 53 (2002).10.1007/s003400100771CrossRefGoogle Scholar
13 Maeda, Y.; Phys. Rev. B 51, 1658 (1995).10.1103/PhysRevB.51.1658CrossRefGoogle Scholar
14 Rebohle, L., Borany, J. von, Skorupa, W., Tyschenko, I. E., Fröb, H.; J. Lumin. 80, 275 (1999).10.1016/S0022-2313(98)00111-2CrossRefGoogle Scholar
15 Skuja, L.. Trukhin, A. N., Plaudis, A. E.; Phys. Stat. Sol. A 84, k153 (1984).10.1002/pssa.2210840258CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-6585876b8c-kppcf Total loading time: 0.802 Render date: 2021-01-28T12:22:05.192Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Study of the Oxidation of Polycrystalline SiGe: Formation of Ge Nanocrystals and their Related Luminescence
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Study of the Oxidation of Polycrystalline SiGe: Formation of Ge Nanocrystals and their Related Luminescence
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Study of the Oxidation of Polycrystalline SiGe: Formation of Ge Nanocrystals and their Related Luminescence
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *