Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-qpj69 Total loading time: 0.634 Render date: 2021-02-25T11:04:43.004Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Study of the Electrochemical Deposition of Cu/Sn Alloy Nanoparticles on Boron Doped Diamond Films for Electrocatalytic Nitrate Reduction

Published online by Cambridge University Press:  14 January 2013

Jorge T. Matsushima
Affiliation:
LABEMAC / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Andrea B. Couto
Affiliation:
LABEMAC / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Neidenei G. Ferreira
Affiliation:
LABEMAC / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Mauricio R. Baldan
Affiliation:
LABEMAC / INPE, 12245-970, São Jose dos Campos, SP, Brazil.
Get access

Abstract

This paper presents the study of the electrochemical deposition of Cu/Sn alloy nanoparticles on Boron Doped Diamond (BDD) films in order to improve their electrocatalytic activity and selectivity for application in nitrate electrochemical reduction. Cyclic voltammetry measurements evidenced the formation of Cu/Sn alloy electrodeposited on BDD electrode. The electrodeposited Cu/Sn can be better visualized by analyzing the dissolution process. By studying the dissolution peak separately, the dissolution peak of the Sn was obtained at a more positive potential, when compared with the dissolution peak of Cu. From the scanning electronic microscopy (SEM) analysis, the homogeneous distribution of the Cu/Sn alloys particles on BDD surface with grain size in nanometric scale was verified. From X-ray diffraction analysis, two Cu/Sn alloy phases (Cu41Sn11 and Cu10Sn3) were identified for the electrodeposits obtained at -0.5V and charge of 0.26 C. The electrocatalytic reduction of nitrate in 0.1 M Britton-Robinson (BR) buffer solution with pH 9 was analyzed. The BDD electrode modified with Cu/Sn alloy nanoparticles proved to potentiate the electrocatalytic reduction of nitrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below.

References

Tenne, R., Patel, K., Hashimoto, K. and Fujishima, A., J. Electroanal. Chem. 347, 409 (1993).10.1016/0022-0728(93)80105-QCrossRef
Panizza, M., Brillas, E. and Comninellis, C., J. Environ. Eng. Management 18, 139 (2008).
Schmalz, V., Dittmar, T., Haaken, D. and Worch, E., Water Res. 43, 5260 (2009).10.1016/j.watres.2009.08.036CrossRef
Levy-Clement, C., Ndao, N. A., Katty, A., Bernard, M., Deneuville, A., Comninellis, C. and Fujishima, A., Diam. Relat. Mater. 12, 606 (2003).10.1016/S0925-9635(02)00368-0CrossRef
Bouamrane, F., Tadjeddine, A., Butler, J. E., Tenne, R. and Levy-Clement, C., J. Electroanal. Chem. 405, 95 (1996).10.1016/0022-0728(95)04388-8CrossRef
Reuben, C., Galun, E., Cohen, H., Tenne, R., Kalish, R., Muraki, Y., Hashimoto, K., Fujishima, A., Butler, J.M. and Lévy-Clément, C., J. Electroanal. Chem. 396, 233 (1995).10.1016/0022-0728(95)03961-FCrossRef
Tenne, R., Patel, K., Hashimoto, K. and Fujishima, A., J. Electroanal. Chem. 347, 409 (1993).10.1016/0022-0728(93)80105-QCrossRef
Gelberg, K. H., Church, L., Casey, G., London, M., Roerig, D. S., Boyd, J. and Hill, M., Environ. Res. 80, 34 (1999).10.1006/enrs.1998.3881CrossRef
Campbell, F.W. and Compton, R.G., Anal. Bional. Chem. 396, 241 (2010).10.1007/s00216-009-3063-7CrossRef
Siné, G., Duo, I., El Roustom, B., Fóti, G. and Comninellis, C., J. App. Electrochem. 36, 847 (2006).10.1007/s10800-006-9159-2CrossRef
Welch, C.M. and Compton, R.G., Anal. Bioanal. Chem. 384, 601 (2006).10.1007/s00216-005-0230-3CrossRef
Toghill, K.E. and Compton, R.G., Electroanalysis 22, 1947 (2010).10.1002/elan.201000072CrossRef
Campbell, F.W. and Compton, R.G., Anal. Bioanal. Chem. 396, 241 (2010).10.1007/s00216-009-3063-7CrossRef
Dima, G.E., Vooys, A.C.A. and Koper, M.T.M., J. Electroanal. Chem. 554, 15 (2003).10.1016/S0022-0728(02)01443-2CrossRef
Ya Safanova, T. and Petrii, O.A., Russ. J. Electrochem. 34, 1137 (2002).
Shimazu, K., Goto, R. and Tada, K., Chem. Lett. 204 (2002).10.1246/cl.2002.204CrossRef
Ferreira, N. G., Silva, L. L. G., Corat, E. J., Trava Airoldi, V. J. and Iha, K., Braz. J. Phys. 29, 760 (1999).10.1590/S0103-97331999000400030CrossRef
Milhano, C., and Pletcher, D., J. Electroanal. Chem. 614, 24 (2008).10.1016/j.jelechem.2007.11.001CrossRef
Reyter, D., Bélanger, D. and Roué, L., J. Phys. Chem. C 113, 290 (2009).10.1021/jp805484tCrossRef
Bockris, J.O.M. and Kim, J., J. Appl. Electrochem. 27, 623 (1997).10.1023/A:1018419316870CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Study of the Electrochemical Deposition of Cu/Sn Alloy Nanoparticles on Boron Doped Diamond Films for Electrocatalytic Nitrate Reduction
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Study of the Electrochemical Deposition of Cu/Sn Alloy Nanoparticles on Boron Doped Diamond Films for Electrocatalytic Nitrate Reduction
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Study of the Electrochemical Deposition of Cu/Sn Alloy Nanoparticles on Boron Doped Diamond Films for Electrocatalytic Nitrate Reduction
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *