Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T13:30:08.941Z Has data issue: false hasContentIssue false

Study of Silicon Surface Roughness by Atomic Force Microscopy

Published online by Cambridge University Press:  22 February 2011

Andrew G. Gilicinski
Affiliation:
Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA 18195
Rebecca M. Rynders
Affiliation:
Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA 18195
Scotjt E. Beck
Affiliation:
Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA 18195
Yale E. Strausser
Affiliation:
Digital Instruments, Inc., 520 E. Montecito Street, Santa Barbara, CA 93103
James R. Stets
Affiliation:
Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA 18195
Brian S. Felker
Affiliation:
Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA 18195
David A. Bohling
Affiliation:
Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA 18195
Get access

Abstract

Progress is reported in developing reliable methodology for imaging silicon surfaces with the atomic force microscope (AFM). A new form of AFM, known as tapping mode AFM, has been found to provide the best quality data for surface roughness determinations. Commercially available colloidal gold spheres have been used to fabricate tip characterization standards and are used to report tip size with roughness data. Power spectral density calculations are shown to provide a useful roughness calculation based on lateral wavelength.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Binnig, G., Quate, C. F., Gerber, C., Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle Scholar
2. Ohnesorge, F. and Binnig, G., Science 260, 1451 (1993).Google Scholar
3. Ohmi, T., Miyashita, M., Itano, M., Imaoka, T., Kawanabe, I., IEEE Electron Dev. Lett., 39 (3), 537545 (1992).Google Scholar
4. Malik, I. J., Pirooz, S., Shive, L., Davenport, A. J., Vitus, C. M., J. Electrochem. Soc. 140 (5), L75–L77 (1993).Google Scholar
5. Beck, S. E., Gilicinski, A. G., Felker, B. S., Langan, J. G., George, M. A., Bohling, D. A., Ivankovits, J. C., and Roberts, D. A. in Proceedings of the Third International Symposium on Cleaning Technology in Semiconductor Device Manufacturing, edited by Ruzyllo, J. and Novak, R. E. (Electrochemical Society Proceedings, 1993) in press.Google Scholar
6. Beck, S. E., Gilicinski, A. G., Felker, B. S., Langan, J. G., Bohling, D. A., George, M. A., Ivankovits, J. C., and Rynders, R. M. in Interface Control of Electrical, Chemical. and Mechanical Properties, edited by Murarka, S. P., Ohmi, T., Rose, K., and Seidel, T. (Mater. Res. Soc. Proc., Pittsburgh, PA, 1993) in press.Google Scholar
7. Digital Instruments, Inc., Santa Barbara, CA.Google Scholar
8. The 20 Å height standard was a generous gift from Dr. Fu-san from the laboratory of Prof. T. Ohmi at Sendai University, Japan.Google Scholar
9. Vesenka, J., Manne, S., Giberson, R., Marsh, T., Henderson, E., Biophysical Journal 65, 992997 (1993).Google Scholar
10. Ted Pella, Inc., Redding, CA.Google Scholar
11. Stover, J. C., Optical Scattering: Measurements and Analysis, (McGraw-Hill, New York, 1990).Google Scholar
12. Bennett, J. M. and Mattsson, L., Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).Google Scholar
13. Bullis, M., presented at the SEMI Microroughness Task Force, July 1993 (unpublished).Google Scholar
14. Keller, D. J., Franke, F. S., Surface Science 294 (3), 409419 (1993).CrossRefGoogle Scholar