Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-9qwsl Total loading time: 0.223 Render date: 2023-02-06T10:49:57.933Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Study of Crystallinity in μc-Si:H Films Deposited by Cat-CVD for Thin Film Solar Cell Applications

Published online by Cambridge University Press:  01 February 2011

Cheng-Hang Hsu
Affiliation:
sean.c.hsu@gmail.com, National Chiao-Tung University, Department of Photonics, Hsinchu, Taiwan, Province of China
Yi-Peng Hsu
Affiliation:
sonnoy.eo@gmail.com, National Chiao-Tung University, Department of Photonics, Hsinchu, Taiwan, Province of China
Fang-Hong Yao
Affiliation:
kingzzcnjjkc@hotmail.com, National Chiao-Tung University, Department of Photonics, Hsinchu, Taiwan, Province of China
Yen-Tang Huang
Affiliation:
yellowcandyh@hotmail.com, National Chiao Tung University, Department of Photonics, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan, Hsinchu, 30010, Taiwan, Province of China, 886-3-5712121-52922
Chuang-Chuang Tsai
Affiliation:
cctsai7@mail.nctu.edu.tw, National Chiao-Tung University, Department of Photonics, Hsinchu, Taiwan, Province of China
Hsiao-Wen Zan
Affiliation:
hsiaowen@mail.nctu.edu.tw, National Chiao-Tung University, Department of Photonics, Hsinchu, Taiwan, Province of China
Chien-Chung Bi
Affiliation:
peter_bi@nexpw.com, NexPower Technology Corporation, Taichung, Taiwan, Province of China
Chun-Hsiung Lu
Affiliation:
ryan_lu@nexpw.com, NexPower Technology Corporation, Taichung, Taiwan, Province of China
Chih-Hung Yeh
Affiliation:
spencer_yeh@nexpw.com, NexPower Technology Corporation, Taichung, Taiwan, Province of China
Get access

Abstract

The crystallinity of the hydrogenated microcrystalline silicon (μc-Si:H) film was known to influence the solar cell efficiency greatly. Also hydrogen was found to play a critical role in controlling the crystallinity. Instead of employing conventional plasma deposition techniques, this work focused on using catalytic chemical vapor deposition (Cat-CVD) to study the effect of hydrogen dilution and the filament-to-substrate distance on the crystallinity, deposition rate, microstructure factor and electrical property of the μc-Si:H film. We found that the substrate material and structure can affect the crystallinity of the μc-Si:H film and the incubation effect. Comparing bare glass, TCO-coated glass, a-Si:H-coated glass and μc-Si:H-coated glass, the microcrystalline phase grows the fastest onto μc-Si:H surface, but the slowest onto a-Si:H surface. Surprisingly, the template effect lasted for more than a thousand atomic layers of silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Meier, J., Dubail, S., Platz, R., Torres, P., Kroll, U., Selvan, J. A. Anna, Vaucher, N. Pellaton, Hof, Ch., Fischer, D., Keppner, H., Flückiger, R., Shah, A., Shklover, V. and Ufert, K.-D., Sol. En. Mat. Sol. Cells, 49, 35 (1997).CrossRefGoogle Scholar
2 Wang, F., Liu, H. N., He, Y. L., Schweiger, A., and Schwarz, R., J. Non-Cryst. Solids, 137&138, 511 (1991).CrossRefGoogle Scholar
3 Collins, R.W., Ferlauto, A.S., Ferreira, G.M., Chen, C., Koh, J., Koval, R.J., Lee, Y., Pearce, J.M. and Wronski, C.R., Sol. En. Mat. Sol. Cells, 78, 143 (2003).CrossRefGoogle Scholar
4 Meillaud, F., Vallat-Sauvain, E., Niquille, X., Dubey, M., Bailat, J., Shah, A. and Ballif, C., Proc. 31 th IEEE Photovoltaic Specialist Conf., 1412 (2005).Google Scholar
5 Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett., 31, 292 (1977).CrossRefGoogle Scholar
6 Spanakis, E., Stratakis, E., Tzanetakis, P. and Wang, Q., J. Appl. Phys., 89, 4294 (2001)CrossRefGoogle Scholar
7 Mahan, A. H. and Vanecek, M., AIP Conf. Proc., 234, 195 (1991)CrossRefGoogle Scholar
8 Wang, Q., Thin Solid Films, 517, 3570 (2009).CrossRefGoogle Scholar
9 Ross, C., Mai, Y., Carius, R. and Finger, F., Mater. Res. Soc. Symp. Proc., 862, A10.4 (2005)Google Scholar
10 Cabarrocas, P.R., Layadi, N., Heitz, T., and Drevillon, B., Appl. Phys. Lett., 66, 3609 (1995).CrossRefGoogle Scholar
11 Tsai, C.C., Anderson, G.B., Thompson, R., and Wacker, B., J. Non-Cryst. Solids, 114, 151 (1989).CrossRefGoogle Scholar
12 Klein, S., Finger, F., Carius, R. and Lossen, J., Thin Solid Films, 501, 43 (2006).CrossRefGoogle Scholar
13 Gallagher, A., Thin Solid Films, 395, 25 (2001).CrossRefGoogle Scholar
14 Feenstra, K. F., Schropp, R. E. I., and Weg, W. F. Van der, J. Appl. Phys., 85, 6843 (1999).CrossRefGoogle Scholar
15 Mai, Y., Klein, S., Carius, R., Wolff, J., Lambertz, A., Finger, F. and Geng, X., J. Appl. Phys., 97, 114913 (2005).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Study of Crystallinity in μc-Si:H Films Deposited by Cat-CVD for Thin Film Solar Cell Applications
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Study of Crystallinity in μc-Si:H Films Deposited by Cat-CVD for Thin Film Solar Cell Applications
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Study of Crystallinity in μc-Si:H Films Deposited by Cat-CVD for Thin Film Solar Cell Applications
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *