Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T09:23:10.611Z Has data issue: false hasContentIssue false

Structure and electrical activity of rare-earth dopants in selected III-Vs

Published online by Cambridge University Press:  01 February 2011

J.-S. Filhol
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom
S. Petit
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom
R. Jones
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom
B. Hourahine
Affiliation:
Theoretische Physik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
Th. Frauenheim
Affiliation:
Theoretische Physik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
H. Overhof
Affiliation:
Theoretische Physik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
J. Coutinho
Affiliation:
Department of Physics, University of Aveiro, 3810 Aveiro, Portugal
M. J. Shaw
Affiliation:
School of Natural Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7 RU, United Kingdom
P. R. Briddon
Affiliation:
School of Natural Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7 RU, United Kingdom
S. Öberg
Affiliation:
Luleå University of Technology SE-97187 Luleå, Sweden
Get access

Abstract

Density functional theory is used to investigate Eu, Er and Tm rare earth (RE) impurities in GaAs, GaN and AlN. The most stable site is when the RE is located at a group III substitutional site but in GaN and GaAs these defects do not then possess any gap levels, unlike AlN. RE-VN defects in GaN are shown to possess levels which could act as traps for excitons. The interaction of oxygen with substitutional REs is also considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sobolev, N. A. et al., Semiconductors 33, 624 (1999).Google Scholar
[2] Wang, Y. Q. and Steckl, A. J., Appl. Phys. Lett. 82, 502 (2003).Google Scholar
[3] Takahei, K., Taguchi, A., and Hogg, R. A., J. Appl. Phys. 82, 3997 (1997).Google Scholar
[4] Hogg, R. A., Takahei, K., and Taguchi, A., Phys. Rev. B 56, 10255 (1997).Google Scholar
[5] Wu, X. et al., Appl. Phys. Lett. 70, 2126 (1997).Google Scholar
[6] Jadwisienczak, W. M., Lozykowski, H. J., Berishev, I., Bensaoula, A., and Brown, I. G., J. Appl. Phys. 89, 4384 (2001).Google Scholar
[7] Caldwell, M. L., Van Patten, P. G., Kordesch, M. E., and Richardson, H. H., MRS Internet J. Nitride Semicond. Res. 6, 13 (2001).Google Scholar
[8] Kozanecki, A., Chan, M., Jeynes, C., Sealy, B., and Homewood, K., Solid State Commun. 78, 763 (1991).Google Scholar
[9] Nakata, J., Taniguchi, M., and Takahei, K., Appl. Phys. Lett. 61, 2665 (1992).Google Scholar
[10] Alves, E. et al., Nucl. Instrum. Methods B 138, 421 (1998).Google Scholar
[11] Monteiro, T. et al., Physica B 308, 22 (2001).Google Scholar
[12] Palczewska, M. et al., Solid State Commun. 114, 39 (2000).Google Scholar
[13] Lorenz, K. et al., Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 161, 946 (2000).Google Scholar
[14] Briddon, P. R. and Jones, R., Phys. Status Solidi B 217, 131 (2000).Google Scholar
[15] Hartwigsen, C., Goedecker, S., and Hutter, J., Phys. Rev. B 58, 3641 (1998).Google Scholar
[16] Taguchi, A. and Ohno, T., Phys. Rev. B 56, 9477 (1997).Google Scholar
[17] Citrin, P. H., Northrup, P. A., Birkhahn, R., and Steckl, A. J., Appl. Phys. Lett. 76, 2865 (2000).Google Scholar
[18] Bang, H. et al., J. Cryst. Growth 237, 1027 (2002).Google Scholar
[19] Langer, J. M. and Heinrich, H., Phys. Rev. Lett. 55, 1414 (1985).Google Scholar
[20] Uedono, A., Bang, H., Horibe, K., Morishima, S., and Akimoto, K., J. Appl. Phys. 93, 5181 (2003).Google Scholar
[21] Neugebauer, J. and Van de Walle, C. G., Appl. Phys. Lett. 69, 503 (1996).Google Scholar
[22] Schneider, J. et al., Appl. Phys. Lett. 54, 1442 (1989).Google Scholar
[23] Coutinho, J., Jones, R., Shaw, M. J., Briddon, P. R., and Oberg, S., Optically active erbium-oxygen complexes in gaas,.Google Scholar
[24] Hasse, D., Dörnen, A., Takahei, K., and Tagushi, A., Mater. Res. Soc. Symp. Proc. 422, 179, 1996.Google Scholar
[25] Thonke, K., Hermann, H. U., and Schneider, J., J. Phys. C 21, 5881 (1988).Google Scholar
[26] Park, C. H. and Chadi, D. J., Phys. Rev. B 55, 12995 (1997).Google Scholar
[27] Klik, M. A. J., Gregorkiewicz, T., Bradley, I. V., and Wells, J.-P. R., Phys. Rev. Lett. 89, 227401 (2002).Google Scholar