Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-18T02:12:08.269Z Has data issue: false hasContentIssue false

Structure and Coherence of Metallic Superlattices

Published online by Cambridge University Press:  26 February 2011

D. B. McWhan
Affiliation:
AT&T Bell Laboratories
Murray Hill
Affiliation:
New Jersey 07974
Get access

Extract

Most of the papers in this symposium have dealt with superlattices formed from semiconductors with the diamond or zinc blende structure or derivative structures such as fluorite in which one sublattice has the diamond structure. Such superlattices are often called compositionally modulated alloys (CMA) because the two components have the same or related structures and because the two components have some mutual solubility. In these cases, depending on the differences in the lattice parameters, the resulting CMA will be almost a perfect single crystal, and the sharpness of the interfaces between the two alternating components will depend on the amount of interdiffusion during growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Schuller, I. K., Phys. Rev. Letters 44, 1597 (1980).CrossRefGoogle Scholar
[2] DeFontaine, D. in Local Atomic Arrangements Studied by X-ray Diffraction, Cohen, J. B. and Hillard, J. E., eds., p. 51,Gordon and Breach, New York 1966.Google Scholar
[3] Segmuller, A., Blakesly, A. E., J. Appl. Cryst. 6, 19 (1973).CrossRefGoogle Scholar
[4] Fleming, R. M., McWhan, D. B., Gossard, A. C., Wiegmann, W., and Logan, R. A., J. Appl. Phys. 51, 357 (1980).CrossRefGoogle Scholar
[5] McWhan, D. B. in Synthetic Modulated Structures, eds. Chang, L. L. and Giessen, B. C., Academic Press, in press.Google Scholar
[6] Neumann, D. A., Zabel, H., Morkos, H., Appl. Phys. Letters, 43, 59 (1983).CrossRefGoogle Scholar
[7] Sample supplied by Tung, R..Google Scholar
[8] Gyorgy, E. M., McWhan, D. B., Dillon, J. R. Jr., Walker, L. R., and Waszczak, J. V., Phys. Rev. B 25, 6739 (1982).CrossRefGoogle Scholar
[9] Durbin, S. M., Cunningham, J. E., Flynn, C. P., J. Phys. F. 12, L75 (1982).CrossRefGoogle Scholar
[10] Hertel, G., McWhan, D. B., Rowell, J. M., Superconductivity in d- and f-band Metals, (1982), Buckel, W. and Weber, N. eds., Kernforschungszentrum, Karlsruhe 1982, p. 299.Google Scholar
[11] Lowe, W. P., Geballe, T. H., Phys. Rev. B29, 4961 (1984).CrossRefGoogle Scholar
[12] McWhan, D. B., Gurvitch, M., Rowell, J. M., Walker, L. R., J. Appl. Physics, 54, 3886 (1983).CrossRefGoogle Scholar
[13] Khan, M. R., Chun, C. S. L., Felcher, G. P., Grimsditch, M., Kueny, A., Falco, C. M. and Schuller, I. K., Phys. Rev. B27, 7186 (1983).CrossRefGoogle Scholar
[14] McWhan, D. B. in High Pressure in Science and Technology, MRS symposium, Vol.22, Homan, C., MacCrone, R. K. and Whalley, E., eds., North Holland, New York 1984, p. 131.Google Scholar
[15] Greene, L. H., Feldmann, W. L., Rowell, J. M., Batlogg, B., Gyorgy, E. M., Lowe, W. P., and McWhan, D. B., Proc. of First “Notre Dame” International Conference on Superlattices, Microstructures, and Microdevices, to be published.Google Scholar