Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-21T16:53:03.094Z Has data issue: false hasContentIssue false

Structural, optical and magnetic properties of highly oriented transition metal (Mn/Co/Ni/Cu) doped ZnO thin films prepared by PLD

Published online by Cambridge University Press:  11 July 2012

Arun Aravind
Affiliation:
Nanophotonic and Optoelectronic Device Laboratory, Department of Physics, Cochin University of Science and Technology
M.K. Jayaraj*
Affiliation:
Nanophotonic and Optoelectronic Device Laboratory, Department of Physics, Cochin University of Science and Technology
Mukesh Kumar
Affiliation:
Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee
Ramesh Chandra
Affiliation:
Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee
*
Get access

Abstract

ZnO doped with transition metal (TM) thin films were grown by pulsed laser deposition. XRD pattern reveals that all the ZnTMO films have c-axis orientation normal to the substrate. The reciprocal space mapping shows that the crystallinity of ZnTMO film deteriorates at higher doping of TM. All the TM doped ZnO films have transmittance greater than 75% in the visible region. The band gap of the ZnTMO thin films shows red shift on doping with Ni and Cu where as blue shift is observed for Co and Mn which increases with TM concentration. The copper doped ZnO thin film shows green PL emission at 542 nm along with the band edge emission at 385 nm. But other TM doping shows only band edge emission (385nm) and its intensity decreases at higher doping percentage. The presence of non-polar E2high and E2lowRaman modes in thin films indicates that ‘TM’ doping do not alter the wurtzite structure of ZnO. The magnetic studies of the TM doped ZnO shows room temperature ferromagnetism

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Furdyna, J. K., J. Appl. Phys. 64, R29 (1988).CrossRefGoogle Scholar
Ohno, H., Science 281, 951 (1998).CrossRefGoogle Scholar
Dietl, T., Ohno, H., Matsukura, F., Cibert, J. and Ferrand, D., Science 287, 1019 (2000).CrossRefGoogle Scholar
Fukamura, T., Jin, Z., Ohtomo, A., Koinuma, H. and Kawasaki, M., Appl. Phys. Lett. 75, 3366 (1999).CrossRefGoogle Scholar
Fukamura, T., Jin, Z., Ohtomo, A., Koinuma, H., Kawasaki, M., Shono, T., Hasegawa, T., Koshihara, S. and Koinuma, H., Appl. Phys. Lett. 78, 958 (2001).CrossRefGoogle Scholar
Ueda, K., Tabata, H. and Kawai, T., Appl. Phys. Lett. 79, 988 (2001).CrossRefGoogle Scholar
Sato, K. and Yoshida, H. K., Jpn. J. Appl. Phys 39, L555 (2000).CrossRefGoogle Scholar
Chakraborti, D., Narayan, J. and Prater, J. T., Appl. Phys. Lett. 90, 062504 (2007).CrossRefGoogle Scholar
Shannon, R. D. and Prewitt, C. T., Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 25, 925 (1969).CrossRefGoogle Scholar
Fukamura, T., Jin, Z., Ohtomo, A., Koinuma, H., Kawasaki, M., Shono, T., Hasegawa, T., Koshihara, S. and Koinuma, H., Appl. Phys. Lett. 78, 958 (2001).CrossRefGoogle Scholar
Yoo, Y. Z., J. Appl. Phys, 90, 4246 (2001).CrossRefGoogle Scholar
Ando, K., Saito, H., Jin, Z., Fukumura, T., Kawasaki, M., Matsumoto, Y. and Koinuma, H., J. Appl. Phys. 89, 7284 (2001).CrossRefGoogle Scholar
Kim, K. J. and Park, Y. R., Appl. Phys. Lett. 81, 1420 (2001).CrossRefGoogle Scholar
Sato, K. and Yoshida, H. K., Jpn. J. Appl. Phys 39, L334 (2001).CrossRefGoogle Scholar
Arnold, M. S., Avouris, P., Pan, Z. W. and Wang, Z. L., J. Phys. Chem. B 107, 6599 (2003).CrossRefGoogle Scholar
Ricchter, H., Wang, Z. P. and Ley, L., Solid State Commu. 39, 625 (1981).CrossRefGoogle Scholar
Porto, S. P. S. and Krishnan, R. S., J. Chem. Phys. 47, 1009 (1967).CrossRefGoogle Scholar
Hu, Y. M., Wang, C. Y., Lee, S. S., Han, T. C., Choub, W. Y. and Chen, G. J., J. Raman Spectroscopy, 42, 434 (2011).CrossRefGoogle Scholar
Singhal, R.K., Dhawan, M., Kumar, S., Dolia, S. N., Xing, Y. T. and Saitovitch, E., Physica B 404, 3275 (2009).CrossRefGoogle Scholar
Sharma, P., Gupta, A., Owens, F. J., Inoue, A. and Rao, K. V., J. Magn. Magn. Mater. 282, 115 (2004).CrossRefGoogle Scholar
Kodama, R. H., Makhlouf, S. A. and Berkowitz, A. E., Phys. Rev. Lett. 79, 1393 (1997).CrossRefGoogle Scholar
Ivill, M., Pearton, S. J., Rawal, S., Leu, L., Sadik, P., Das, R., Hebard, A. F., Chisholm, M., Budai, J. D. and Norton, D. P., New J. Phys., 10, 065002 (2008).CrossRefGoogle Scholar
Calderon, M. J., Sarma, S. D., Annals. Phys. 322, 2618 (2007).CrossRefGoogle Scholar