Hostname: page-component-6b989bf9dc-zrclq Total loading time: 0 Render date: 2024-04-12T02:51:11.562Z Has data issue: false hasContentIssue false

Stress Modification in Tungsten Films Deposited by Ion-Assisted Evaporation

Published online by Cambridge University Press:  25 February 2011

R. A. Roy
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
R. Petkie
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
D. S. Yee
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
J. Karasinski
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
A. Boulding
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

The modification of film stress in evaporated tungsten was studied as a function of deposition environment. Using concurrent ion bombardment of the growing film, the stress was seen to vary systematically with ion energy, ion flux, and substrate temperature. The qualitative behavior fits the model of stress modification developed for niobium films. X-ray diffraction was used to study the structure of the films, and a clear correlation between crystallographic texture and film stress is found. The original structure/impurity model for film stress modification due to ion bombardment has been modified to account for the relationship between film stress and texture.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roy, R. A., Cuomo, J. J., and Yee, D. S., J.Vac.Sci.Technol., A6 (3) 1621 (1988)CrossRefGoogle Scholar
2. Hoffman, D. W. and Thornton, J. A., J.Vac. Sci. Technol. 20 (3), 35 (1982)Google Scholar
3. Hoffman, D.W. and Gaerttner, M. R., J. Vac. Sci. Technol. 17 (1), 425 (1980)CrossRefGoogle Scholar
4. Berg, R. S. and Kominiak, G. J., J. Vac. Sci. Technol. 13 (1), 403 (1976)CrossRefGoogle Scholar
5. Ziemann, P. and Kay, E., J. Vac. Sci. Technol., A l (2) 512 (1983)CrossRefGoogle Scholar
6. Harper, J. M. E., Cuomo, J. J., Gambino, R. J., and Kaufman, H. R., in Ion Bombardment Modification of Surfaces: Fundamentals and Applications, Auciello, O. and Kelley, R., eds., Elsevier Science Pub. B. V., Amsterdam, 1984 Google Scholar
7. Cuomo, J. J., Harper, J. M. E., Guarnieri, C. R., Yee, D. S., Attanasio, L. J., Angilello, J., Wu, C. T., and Hammond, R. H., J.Vac.Sci.Technol., 20 (3),349(1982)CrossRefGoogle Scholar
8. Yee, D. S., Floro, J., Mikalsen, D. J., Cuomo, J. J., Ahn, K. Y., and Smith, D. A., J. Vac. Sci. Technol., A3 (6), 2121 (1985)CrossRefGoogle Scholar
9. Huang, T. C., Lim, G., Parmigiani, F., and Kay, E., J. Vac. Sci. Technol., A3 (6), 2161(1985)CrossRefGoogle Scholar
10. Kay, E., Parmigiani, F., and Parrish, W., J. Vac. Sci. Technol. A5, 44 (1987)CrossRefGoogle Scholar
11. Hobson, J.P., Redhead, P. A., Proc. Fourth Internl. Vac. Conf. (1968) 3, and references thereinGoogle Scholar
12. Erlich, G. and Hudda, F. G., J. Chem. Phys., 33, 1253 (1960)CrossRefGoogle Scholar
13. Kay, E., Parmigiani, F.,and Parrish, W., J.Vac.Sci.Technol. A6 (6),3074(1988)CrossRefGoogle Scholar
14. Muller, K.-H., Phys. Rev. B, 35 (15), 7906 (1987)CrossRefGoogle Scholar
15. Petkie, R., Roy, R. A., Yee, D.S., Boulding, A., Kelleher, K. (private commun.)Google Scholar