Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-23T10:59:38.140Z Has data issue: false hasContentIssue false

Stm Imaging of Adsorbed Trimethylgallium on GaAs(001)-(2×4)

Published online by Cambridge University Press:  15 February 2011

A. R. Avery
Affiliation:
IRC for Semiconductor Materials and Department of Chemistry, Imperial College, London SW7 2AY, UK
A. J. Mayne
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
C. M. Goringe
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
J. H. G. Owen
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
C. W. Smith
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
M. O. Schweitzer
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
T. S. Jones
Affiliation:
IRC for Semiconductor Materials and Department of Chemistry, Imperial College, London SW7 2AY, UK
G. A. D. Briggs
Affiliation:
Department of Materials, University of Oxford, Oxford OX1 3PH, UK
W. H. Weinberg
Affiliation:
QUEST and Department of Chemical and Nuclear Engineering, UCSB, CA 93106, USA
Get access

Abstract

Scanning tunnelling microscopy (STM) has been used to image the adsorption of trimethylgallium (TMGa) on GaAs(001)-(2×4) surfaces prepared in situ by molecular beam epitaxy (MBE). Filled states images of the clean surface are dominated by (2×4) unit cells containing only two As dimers. Upon exposure of this surface to TMGa at room temperature, bright oval-shaped features are observed which are centred on the arsenic dimers of the unit cell. These arise from tunnelling from Ga-C bonds of the adsorbed molecules. At low coverages, preferential adsorption on unit cells adjacent to occupied sites along the [110] direction is observed. A detailed statistical analysis of a large number of adsorption sites shows that there is an increased probability of about 24% for adsorption next to a (2×4) unit cell which is occupied relative to an unoccupied one.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See for example, Proceedings of 3rd International Conference on CBE and Related Growth Techniques, J. Crystal Growth 120 (1992) and Proceedings of 6th International Conference on Metal Organic Vapour Phase Epitaxy, J. Crystal Growth 124 (1992).Google Scholar
2. Martin, T. and Whitehouse, C. R., J. Crystal Growth 120, 25 (1992).CrossRefGoogle Scholar
3. Lane, P. A., Martin, T., Freer, R. W., Calcott, P. D. J., Whitehouse, C. R., Jones, A. C. and Rushworth, S., Appl. Phys. Lett. 61, 285 (1992).CrossRefGoogle Scholar
4. Gibson, E. M., Foxon, C. T., Zhang, J. and Joyce, B. A., J. Crystal Growth 105, 81 (1990).Google Scholar
5. Nishizawa, J., Kurabayashi, T., Abe, H. and Nozoe, A., Surf. Sci. 185, 249 (1987); M. L.Yu, J. Appl. Phys. 73, 716 (1993).CrossRefGoogle Scholar
6. Kaneko, T., Naji, O., Jones, T. S. and Joyce, B. A., J. Crystal Growth (in press).Google Scholar
7. Avouris, Ph. and Lyo, I. W., Appl. Surf. Sci. 60/61, 426 (1992).Google Scholar
8. Pashley, M. D., Haberern, K. W., Friday, W., Woodall, J. M. and Kirchner, P. D., Phys. Rev. Lett. 60, 2176 (1988).Google Scholar
9. Biegelsen, D. K., Bringans, R. D., Northrup, J. E. and Schwartz, L. E., Phys. Rev. B 41, 5701 (1990).Google Scholar
10. Bressler-Hill, V., Wassermeier, M., Pond, K., Maboudian, R., Briggs, G. A. D., Petroff, P. M. and Weinberg, W. H., J. Vac. Sci. Technol. B10, 1881 (1992).Google Scholar
11. Wassermeier, M., Bressler-Hill, V., Maboudian, R., Pond, K., Wang, X. S., Weinberg, W. H. and Petroff, P. M., Surf. Sci. 278, L147 (1992).Google Scholar
12. Briggs, G. A. D., Knall, J., Mayne, A. J., Jones, T. S., Weinberg, W. H. and Avery, A. R., Nanotechnology 3, 113 (1992).Google Scholar
13. Mayne, A. J., Avery, A. R., Knall, J., Jones, T. S., Briggs, G. A. D. and Weinberg, W. H., Surf. Sci. 284, 247 (1993).CrossRefGoogle Scholar
14. Yu, M. L., Memmert, U. and Kuech, T. F., Appl. Phys. Lett. 55, 1011 (1989).Google Scholar
15. Narmann, A. and Yu, M. L., Surf. Sci. 269/270, 1041 (1992).CrossRefGoogle Scholar
16. Memmert, U. and Yu, M. L., Appl. Phys. Lett. 56, 1883 (1990).Google Scholar
17. Souda, R. and Yu, M. L., Surf. Sci. 280, 115 (1993).CrossRefGoogle Scholar
18. Smith, C. W. and Goringe, C. M., to be published.Google Scholar
19. Okuno, Y., Asahi, H., Kaneko, T., Kang, T. W. and Gonda, S., J. Crystal Growth 105, 185 (1990).Google Scholar
20. Shitara, T., Zhang, J., Neave, J. H. and Joyce, B. A., J. Appl. Phys. 71, 4299 (1992).Google Scholar