Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-xl52z Total loading time: 26.752 Render date: 2021-04-14T10:20:52.856Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications

Published online by Cambridge University Press:  27 February 2012

Yang Zhong
Affiliation:
Center for Space Nuclear Research, Idaho National Laboratory, ID 83415, U.S.A. Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, CT 06269, U.S.A.
Robert C. O’Brien
Affiliation:
Center for Space Nuclear Research, Idaho National Laboratory, ID 83415, U.S.A.
Steven D. Howe
Affiliation:
Center for Space Nuclear Research, Idaho National Laboratory, ID 83415, U.S.A.
Nathan D. Jerred
Affiliation:
Center for Space Nuclear Research, Idaho National Laboratory, ID 83415, U.S.A.
Kristopher Schwinn
Affiliation:
Center for Space Nuclear Research, Idaho National Laboratory, ID 83415, U.S.A.
Laura Sudderth
Affiliation:
Center for Space Nuclear Research, Idaho National Laboratory, ID 83415, U.S.A.
Joshua Hundley
Affiliation:
Center for Space Nuclear Research, Idaho National Laboratory, ID 83415, U.S.A.
Get access

Abstract

The feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1. U.S Energy Information Administration, Annual Energy Review (2011).Google Scholar
2. Burkes, D. E., Wachs, D.M., Warner, J.E. and Howe, S.D., Proceedings of Space Nuclear Conference 2007, Paper # 2027 (2007).Google Scholar
3. Wang, X., Xie, Y., Guo, H. and Van der Biest, O., Rare Metals 25 246 (2006).CrossRefGoogle Scholar
4. O’Brien, R.C., Ambrosi, R.M., Bannister, N.P., Howe, S.D. and Atkinson, H.V., Journal of Nuclear Materials, 393 108 (2009).CrossRefGoogle Scholar
5. Rosinski, M., Fortuna, E., Michalski, A., Pakiela, Z., Kurzydlowski, K.J., Fus. Eng. Des. 82 2621 (2007).CrossRefGoogle Scholar
6. Zhang, J., Wang, L., Jiang, W., Chen, L., Mater. Sci. Eng. A 487 137 (2008)CrossRefGoogle Scholar
7. Kothari, N.C., Journal of Less-Common Metals 5 140 (1963).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 21 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 14th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *