Hostname: page-component-cc8bf7c57-fxdwj Total loading time: 0 Render date: 2024-12-09T08:27:22.242Z Has data issue: false hasContentIssue false

Sintering of Metal(100) Homoepitaxial Islands: Kink Rounding Barriers, Modified Size Scaling, and Experimental Behavior

Published online by Cambridge University Press:  11 February 2011

Da-Jiang Liu
Affiliation:
Ames Laboratory – USDOE, Iowa State University, Ames, Iowa 50011
C. R. Stoldt*
Affiliation:
Department of Chemistry, Iowa State University, Ames, Iowa 50011
P. A. Thiel
Affiliation:
Ames Laboratory – USDOE, Iowa State University, Ames, Iowa 50011 Department of Chemistry, Iowa State University, Ames, Iowa 50011
J. W. Evans
Affiliation:
Ames Laboratory – USDOE, Iowa State University, Ames, Iowa 50011 Department of Mathematics, Iowa State University, Ames, Iowa 50011
*
* Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309
Get access

Abstract

Near-square islands form during sub-monolayer homoepitaxial growth on metal (100) surfaces. Diffusion of these islands after deposition leads to collision of island pairs, typically corner-to-corner creating dumbbell-shaped clusters. Subsequent coalescence (or sintering) recovers a near-square equilibrium shape. This process is mediated by periphery diffusion (PD) and its study can provide detailed insight into the underlying dynamic processes and energetics. Atomistic modeling reveals that the size scaling of the characteristic relaxation time, τ, depends on the detailed energy barriers of various hopping processes that contribute to PD. Simulations without an extra kink or corner rounding barrier for PD reveals τ ∼ L4, while behavior approaching τ ∼ L3 is observed with a significant extra kink rounding barrier for PD. The latter is consistent with experimental observations for Ag/Ag(100) at 300 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Zinke-Allmang, M., Feldman, L. C., and Grabow, M. H., Surf. Sci. Rep. 16, 377 (1992).Google Scholar
[2] Wen, J.-M., Chang, S.-L., Burnett, J. W., Evans, J. W., and Thiel, P. A., Phys. Rev. Lett. 73, 2591 (1994).Google Scholar
[3] Wen, J.-M., Evans, J. W., Bartelt, M. C., Burnett, J. W., and Thiel, P. A., Phys. Rev. Lett. 76, 652 (1996).Google Scholar
[4] Pai, W. W., Swan, A. K., Zhang, Z., and Wendelken, J. F., Phys. Rev. Lett. 79, 3210 (1997).Google Scholar
[5] Sholl, D. S. and Skodje, R. T., Phys. Rev. Lett. 75, 3158 (1995).Google Scholar
[6] Mills, G., Mattsson, T. R., Møllnitz, L., and Metiu, H., J. Chem. Phys. 111, 8639 (1999).Google Scholar
[7] Pal, S. and Fichthorn, K. A., Phys. Rev. B 60, 7804 (1999).Google Scholar
[8] Khare, S. V., Bartelt, N. C., and Einstein, T. L., Phys. Rev. Lett. 75, 2148 (1995).Google Scholar
[9] Stoldt, C. R., Cadilhe, A. M., Jenks, C. J., Wen, J.-M., Evans, J. W., and Thiel, P. A., Phys. Rev. Lett. 81, 2950 (1998).Google Scholar
[10] Cadilhe, A. M., Stoldt, C. R., Jenks, C. J., Thiel, P. A., and Evans, J. W., Phys. Rev. B 61, 4910 (2000).Google Scholar
[11] Pai, W. W., Wendelken, J. F., Stoldt, C. R., Thiel, P. A., Evans, J. W., and Liu, D.-J., Phys. Rev. Lett. 86, 3088 (2001).Google Scholar
[12] Liu, D.-J. and Evans, J. W., Phys. Rev. B 66, 165407 (2002).Google Scholar
[13] Eβer, M., Morgenstern, K., Rosenfeld, G., and Comsa, G., Surf. Sci. 402–404, 341 (1998).Google Scholar
[14] Yu, B. D. and Scheffler, M., Phys. Rev. B 55, 13916 (1997).Google Scholar
[15] Kürpick, U. and Rahman, T. S., Phys. Rev. B 57, 2482 (1998).Google Scholar
[16] Nelson, R. C., Einstein, T. L., Khare, S. V., and Rous, P. J., Surf. Sci. 295, 462 (1993).Google Scholar
[17] Hoogeman, M. S., Kuipers, L., Schlöβer, D. C., and Frenken, J. W. M., Surf. Sci. 447, 25 (2000).Google Scholar
[18] Pierre-Louis, O., D'Orsogna, M. R., and Einstein, T. L., Phys. Rev. Lett. 82, 3661 (1999).Google Scholar
[19] Murty, M. V. R. and Cooper, B. H., Phys. Rev. Lett. 83, 352 (1999).Google Scholar
[20] Emmerich, H., Phys. Rev. B 65, 233406 (2002).Google Scholar
[21] Kallunki, J., Krug, J., and Kotrla, M., Phys. Rev. B 65, 205411 (2002).Google Scholar
[22] Bales, G. S. and Zangwill, A., Phys. Rev. B 41, 5500 (1990).Google Scholar
[23] Caspersen, K. J., Layson, A. R., Stoldt, C. R., Fournee, V., Thiel, P. A., and Evans, J. W., Phys. Rev. B 65, 193407 (2002).Google Scholar
[24] Jensen, P., Combe, N., Larralde, H., Barrat, J. L., Misbah, C., and Pimpinelli, A., Eur. Phys. J. B 11, 497 (1999).Google Scholar
[25] Combe, N. and Larralde, H., Phys. Rev. B 62, 16074 (2000).Google Scholar