Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-21T06:57:30.852Z Has data issue: false hasContentIssue false

Silicon-29 NMR Study on the Initial Stage of the Co-Hydrolysis of Tetraethoxysilane and Methyltriethoxysilane

Published online by Cambridge University Press:  25 February 2011

Yoshiyuki Sugahara
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo, 169, Japan.
Yoichi Tanaka
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo, 169, Japan.
Shuji Sato
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo, 169, Japan.
Kazuyuki Kuroda
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo, 169, Japan.
Chuzo Kato
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo, 169, Japan.
Get access

Abstract

The hydrolysis and initial condensation processes of the mixtures of TEOS and MTES have been studied by GC-MS and 29Si-NMR in the systems with TEOS:MTES:ethyl alcohol:water:HCl=1:1:14:28:6×1O-4 and 0.5:1.5:14:28:6×10-4. Thedimer CH3(HO)2SiOSi(OH)3 possessing both TEOS- and MTES-derived units was identified, indicating that the condensation between a hydrolyzed TEOS-derived monomer and a hydrolyzed MTES-derived monomer was one of dominant dimerization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmidt, H. K., Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180 1990), p. 961.Google Scholar
2. Schmidt, H. K., Inorganic and Organometallic Polymers, edited by Zeldin, M., Wynne, K. J., and Allcock, H. R. (ACS Adv. Ser. 360 1988), p. 333 Google Scholar
3. Lee, Y. T., Iwamoto, K., Sekimoto, H., and Seno, M., J. Membrane Sci. 42, 169 (1989).Google Scholar
4. Babonneau, F., Thornem, K. and Mackenzie, J. D., Chem. Mater. 1, 554 (1989).CrossRefGoogle Scholar
5. Babonneau, F., Bois, L., Maquet, J., and Livage, J., Proc. 2nd Eur. Conf. Sol-Gel Tech. (Eurogel'91), edited by Vilminot, S., Nass, R., and Schmidt, H. (1992).Google Scholar
6. Hasegawa, I. and Sakka, S., Bull. Chem. Soc. Jpn. 63, 3203 (1990).Google Scholar
7. van Bommel, M. J., Bernards, T. N. M., and Boonstra, A. H., J. Non-cryst. Solids 128. 231 (1991).Google Scholar
8. Glaser, R. H., Wilkes, G. L., and Bronnimann, C. E., J. Non-cryst. Solids 113, 73 (1989).Google Scholar
9. Brinker, C. J. and Scherer, G. W., Sol-Gel Science (Academie Press, New York, 1990), p. 160.Google Scholar
10. Sugahara, Y., Okada, S., Kuroda, K., and Kato, C., J. Non-cryst. Solids 139. 25 (1992).Google Scholar
11. Sugahara, Y., Okada, S., Sato, S., Kuroda, K., and Kato, C., J. Non-cryst. Solids, submitted.Google Scholar
12. Lentz, C. W., Inorg. Chem. 3, 574 (1964).Google Scholar
13. Hasegawa, I., Kuroda, K., and Kato, K., Bull. Chem. Soc. Jpn. 59, 2279 (1986).CrossRefGoogle Scholar
14. Sugahara, Y., Sato, S., Kuroda, K., and Kato, C., J. Non-cryst. Solids, in press.Google Scholar
15. Assink, R. A. and Kay, B. D., J. Non-cryst. Solids 99), 359 (1988).Google Scholar