Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-55wx7 Total loading time: 0.227 Render date: 2021-03-07T22:43:04.646Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Self-Organization (Assembly) in Biosynthesis of Silk Fibers - A Hierarchical Problem

Published online by Cambridge University Press:  21 February 2011

David L. Kaplan
Affiliation:
Biotechnology Division, U.S. Army Natick Research Center, Natick, Massachusetts, 01760, USA
Stephen Fossey
Affiliation:
Biotechnology Division, U.S. Army Natick Research Center, Natick, Massachusetts, 01760, USA
Christopher Viney
Affiliation:
Center for Bioengineering, University of Washington, Seattle, Washington, USA
Wayne Muller
Affiliation:
Biotechnology Division, U.S. Army Natick Research Center, Natick, Massachusetts, 01760, USA
Get access

Abstract

In natural systems, structural macromolecules undergo prescribed recognition and assembly steps during synthesis and processing. These associations lead to more complex assemblies that exhibit useful multifunctional properties. Many of these processes are not well understood. Some aspects of these processes are presented using the fibrous protein polymer silk as an example. Issues such as polymer chain biosynthesis, chain interactions, processing into fibrils, and complex engineering into supra-assemblies are addressed and biochemical, spectroscopic and modeling studies are reviewed. Genetic level controls of chain composition, crystalline/amorphous domain distribution, chain aggregation, chain registry, silk I-silk II phase transitions, nematic liquid crystalline phase, loss of water, global molecular alignment, and solution spinning are some of the characteristics of this biological system that are addressed. Although some information is available at the molecular and macro-scale levels, a key issue is the paucity of information at the meso-scale level to fully understand the role of structural hierarchy in the silk fiber assembly process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Baer, E., Hiltner, A. and Keith, H. D., Science 235, 1015 (1987).CrossRefGoogle Scholar
2. Kerkam, K., Kaplan, D., Lombardi, S. and Viney, C., Nature 349, 596 (1991).CrossRefGoogle Scholar
3. Kovoor, J., in Ecophysiology of Spiders. edited by Nentwig, W. (Springer-Verlag, Heidelberg, 1987), p. 160.CrossRefGoogle Scholar
4. Gosline, J. M., DeMont, M. E. and Denny, M. W., Endeavour 10, 37 (1986).CrossRefGoogle Scholar
5. Kaplan, D. L., Lombardi, S. J., Muller, W. and Fossey, S., in Biomaterials: Novel Materials from Biological Sources, edited by Byrom, D. (Stockton Press, New York, 1991).Google Scholar
6. Andersen, S. o., Comp. Biochem. Physiol. 35, 705 (1970).CrossRefGoogle Scholar
7. Tsujimoto, Y. and Suzuki, Y., Cell 18, 591 (1979).CrossRefGoogle Scholar
8. Gage, L. P. and Manning, R. F., J. Biol. Chem. 255, 9451 (1980).Google Scholar
9. Xu, M. and Lewis, R. V., Proc. Natl. Academy Sci. 87 7120 (1990).CrossRefGoogle Scholar
10. Lombardi, S. J. and Kaplan, D. L., Polym. Preprints, Div. Polym. Chem., Am. Chem. Soc. 31, 195 (1990).Google Scholar
11. Lombardi, S. J. and Kaplan, D. L., Acta Zool. Fennica 190, 243 (1990).Google Scholar
12. Prosser, I. W. and Mecham, R. P., in Self-Assembling Architecture, edited by Varner, J. E. (Alan Liss, Inc., New York, 1988) p. 1.Google Scholar
13. Candelas, G. C. and Lozpex, F., Comp. Biochem. Physiol. 74, 637 (1983).Google Scholar
14. Lucas, F., Shaw, J. T. B. and Smith, S. G., in Advances in Protein Chemistry, edited by Anfinsen, C. B., Anson, M. L., Bailey, K. and Edsall, J. T. (Academic Press, New York, 1958) p. 107.Google Scholar
15. Shimura, K., Kikuchi, A., Ohtomo, K., Katagata, Y. and Hyodo, A., J. Biochem. 80, 693 (1976).CrossRefGoogle Scholar
16. Lombardi, S. J. and Kaplan, D. L., J. Arachnol. 18, 297 (1990).Google Scholar
17. Strydom, D. J., Haylett, T. and Stead, R. H., Biochem. Res. Commun. 79, 932 (1977).CrossRefGoogle Scholar
18. Fraser, R. D. B. and MacRae, T. P., Conformation of Fibrous Proteins (Academic Press, New York, 1973).Google Scholar
19. Lucas, F., Shaw, J. T. B. and Smith, S. G., Biochem. J. 83, 164 (1962).CrossRefGoogle Scholar
20. Robson, R. M., in Fiber Chemistry Handbook of Fiber Science and Technology, edited by Lewing, M., Pearle, E. (Marcel Dekker, NY, 1985).Google Scholar
21. Asakura, T., Makromol. Chemie 7, 755 (1986).CrossRefGoogle Scholar
22. Viney, C., in Structure. Cellular Synthesis and Assembly of Biopolymers, edited by Case, S. T. (Springer Verlag, Heidelberg, 1992), in press.Google Scholar
23. Viney, C., Kerkam, K., Gilliland, L., Kaplan, D. and Fossey, S., in Complex Fluids edited by Sirota, E. (Mater. Res. Soc. Proc., Pittsburg, PA 1992) in press.Google Scholar
24. Asakura, T., Makromol. Chem. Rapid Commun. 7, 755 (1986)CrossRefGoogle Scholar
25. Ishida, M., Asakura, T., Yokoi, M., Saito, H., Macromol. 23, 88 (1990)CrossRefGoogle Scholar
26. Bell, A. L. and Peakall, D. B., J. Cell Biol. 42, 284 (1969).CrossRefGoogle Scholar
27. Akai, H., J. Sericulture Sci. Japan 55,163 (1986).Google Scholar
28. Marsh, R. E., Corey, R. B. and Pauling, L., Bichem. Biophys. Acta 16, 1 (1955).CrossRefGoogle Scholar
29. Fossey, S. A., Nemethy, G., Gibson, K. D. and Scheraga, H. A., Biopolym. in press (1991).Google Scholar
30. Fossey, S. A., Nemethy, G., Gibson, K. D. and Scheraga, H. A., in Materials Synthesis Based on Biological Processes, edited by Alper, M., Calvert, P., Frankel, R., Rieke, P., Tirrell, D. (Mater. Res. Soc. Proc., Pittsburgh, PA 1991) pp. 239244.Google Scholar
31. Takahashi, Y., Gehoh, M., Yuzuriha, K., J. Polym. Phys. 29, 889 (1990).CrossRefGoogle Scholar
32. Kratky, O., Farraday Soc. 52, 558 (1956).CrossRefGoogle Scholar
33. Veis, A., in Self-Assembling Architechture, edited by Varner, J. E. (Alan Liss, Inc., New York, 1988) p. 129.Google Scholar
34. Birk, D. E., Silver, F. H. and Trelstad, R. C., in Cell Biology of Extracellular Matrix, 2nd ed, edited by Hay, E. D. (Plenum Press, New York, 1991) p. 221.CrossRefGoogle Scholar
35. Herrling, J. and Sparrow, L. G., J. Biol. Macromol. 13, 115 (1991).CrossRefGoogle Scholar
36. Lotz, B. and Colonna-Cesari, F., Biochimie 61, 205 (1979).CrossRefGoogle Scholar
37. Yamaguchi, K., Kikuchi, Y., Takagi, T., Kikuchi, A., Oyama, F., Shimura, K. and Mizuno, S., J. Mol. Biol. 210, 127 (1989).CrossRefGoogle Scholar
38. Kerkam, K., Kaplan, D. L., Lombardi, S. J. and Viney, C., in Materials Synthesis Based on Biological Processes edited by Alper, M., Calvert, P., Frankel, R., Rieke, P., Tirrell, D. (Mater. Res. Soc. Proc., Pittsburgh, PA 1991) pp. 239244.Google Scholar
39. Magoshi, J., Magoshi, Y. and Nakamura, S., J. Appl. Polym. Sci. 41,187 (1985).Google Scholar
40. Tillinghast, E. K., Chase, S.F and Townley, M. A., J. Insect Physiol. 30, 591(1984).CrossRefGoogle Scholar
41. Foelix, R. F., in Biology of Spiders (Harvard University Press, Cambridge, MA 1982) p.121.Google Scholar
42. Dobb, M. G. and McIntyre, J. E., Adv. Polym. Sci. 60/61, 61(1984).CrossRefGoogle Scholar
43. Peakall, D. B., J. Experiment. Zool. 176, 257 (1971).CrossRefGoogle Scholar
44. Townley, M. A. and Tillinghast, E. K., J. Arachnol. 16, 303 (1988).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 13 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Self-Organization (Assembly) in Biosynthesis of Silk Fibers - A Hierarchical Problem
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Self-Organization (Assembly) in Biosynthesis of Silk Fibers - A Hierarchical Problem
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Self-Organization (Assembly) in Biosynthesis of Silk Fibers - A Hierarchical Problem
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *