Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-26T08:16:52.370Z Has data issue: false hasContentIssue false

Self-Assembled Monolayers as Models for Studying Protein Adsorption to Polymer Surfaces

Published online by Cambridge University Press:  21 February 2011

Kevin L. Prime
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138
George M. Whttesides
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138
Get access

Abstract

Self-assembled monolayers (SAMs) of functionalized alkanethiolates on gold are a well-characterized system for studying the interfacial properties of organic materials. We have used SAMs as models for the surfaces of organic polymers and used mem to study the adsorption of proteins onto organic materials. We have formed SAMs from mixtures of alkanethiols in which one alkanethiol is hydrophobic and the other is terminated by a short (2 ≤ n ≤ 17) oligomer of poly(ethylene oxide). These “mixed” SAMs effectively resist the adsorption of fibrinogen from moderately concentrated (1 mg/mL) solutions. Protein adsorption begins when < 5% of the accessible area of the surface consists of hydrophobic groups. These findings suggest that real protein-resistant monolayers must present an almost defect-free surface of oligo(ethylene oxide) groups in order to eliminate adsorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whitesides, G. M. and Laibinis, R. E., Langmuir 6, 87 (1990).CrossRefGoogle Scholar
2. Nuzzo, R. G., Dubois, L. H., and Allara, D. L., J. Am. Chem. Soc. 112, 558 (1990).CrossRefGoogle Scholar
3. Bam, C.D., Evali, J., Whitesides, G. M., and Nuzzo, R. G., J. Am. Chem. Soc. 111, 7155 (1989).Google Scholar
4. Bain, C. D. and Whitesides, G. M., J. Am. Chem. Soc. 110, 6560 (1988).CrossRefGoogle Scholar
5. Bain, C. D. and Whitesides, G. M., Science (Washington, DC 240, 62 (1988).Google Scholar
6. Bam, C. D. and Whitesides, G. M., J. Am. Chem. Soc. 110, 3665 (1988).Google Scholar
7. Bain, C. D. and Whitesides, G. M., Langmuir 5, 1370 (1989).CrossRefGoogle Scholar
8. Laibinis, R. E., Prime, K. L., Janes, L. E., Burbaum, B. L., and Whitesides, G. M., unpublished results.Google Scholar
9. Prime, K. L. and Whitesides, G. M., Science (Washington, DC 252, 1164 (1991).Google Scholar
10. Wahlgren, M. and Arnebrant, T., Trends Biotechnol. 9(6), 201 (1991).CrossRefGoogle Scholar
11. Shirahama, R, Hyomen 27(1), 29 (1989).Google Scholar
12. Fane, A. G. and Fell, C. J. D., Desalination 62, 117 (1987).CrossRefGoogle Scholar
13. Merrill, E. W. and Salzman, E. W., ASAIO J., 6(2), 60 (1983).Google Scholar
14. Gregonis, D. E., Buerger, D. E., Van Wagenen, R. A., Hunter, S. K., and Andrade, J. D., Trans. Sec. Biomaterials 7, 766 (1984).Google Scholar
15. Mori, Y., Nagaoka, S., Takiuchi, H., Kikuchi, T., Noguchi, N., Tanazawa, R, and Noishiki, Y., Trans. Am. Soc. Artif. Intern. Organs 28, 459 (1982).Google Scholar
16. Grainger, D., Okano, T., and Kim, S. W, Advances in Biomedical Polymers, (Plenum, New York, 1987), p. 229.CrossRefGoogle Scholar
17. Pale-Grosdemange, C., Simon, E. S., Prime, K. L., and Whitesides, G. M., J. Am. Chem. Soc. 113, 12 (1991).CrossRefGoogle Scholar
18. Stenius, P., Berg, J., Claesson, P., Gölander, C. G., Herder, C., and Kronberg, B., Croat. Chem. Acta 63, 501 (1990).Google Scholar
19. Gölander, C. G. and Kiss, E., J. Colloid Interface Sci. 121, 240 (1988).CrossRefGoogle Scholar
20. Matsuura, R and Fukuhara, R. E., J. Mol. Struct. 126, 251 (1985).CrossRefGoogle Scholar
21. Dettre, R. H. and Johnson, R. E., J. Phys. Chem. 69, 1507 (1965).CrossRefGoogle Scholar