Skip to main content Accessibility help
×
Home

“Seeing” the Resonant SPP Modes Confined in Metal Nanocavity via Cathodoluminescne Spectroscopy

Published online by Cambridge University Press:  13 February 2014

Liu Chuanpu
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing, P.R. China
Zhu Xinli
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing, P.R. China
Zhang Jiasen
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing, P.R. China
Yu Dapeng
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing, P.R. China
Corresponding
Get access

Abstract:

Surface plasmon polaritons (SPPs), which are coupled excitations of electrons bound to a metal-dielectric interface, show great potential for application in future nanoscale photonic systems due to the strong field confinement at the nanoscale, intensive local field enhancement, and interplay between strongly localized and propagating SPPs. The fabrication of sufficiently smooth metal surface with nanoscale feature size is crucial for SPPs to have practical applications. A template stripping (ST) method combined with PMMA as a template was successfully developed to create extraordinarily smooth metal nanostructures with a desirable feature size and morphology for plasmonics and metamaterials. The advantages of this method, including the high resolution, precipitous top-to bottom profile with a high aspect ratio, and three-dimensional characteristics, make it very suitable for the fabrication of plasmonic structures. By using this ST method, boxing ring-shaped nanocavities have been fabricated and the confined modes of surface plasmon polaritons in these nanocavities have been investigated and imaged by using cathodoluminescence (CL) spectroscopy, which has been turned out to be a powerful means to characterize the resonant SPPs modes confined in metal nanocavities [1∼5] . The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons. Quality factors can be directly acquired from the spectra induced by the ultrasmooth surface of the cavity and the high reflectivity of the silver (Ag) reflectors. Because of its three-dimensional confined characteristics and the omnidirectional reflectors, the nanocavity exhibits a small modal volume, small total volume, rich resonant modes, and flexibility in mode control. Numerous applications, such as plasmonic filter, nanolaser, and efficient light-emitting devices, can be expected to arise from these developments.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Maier, S. A., Plasmonics: fundamentals and applications, Springer, 2007.CrossRefGoogle Scholar
Barnes, W. L., Dereux, A., and Ebbesen, T. W., Nature 424, 824 (2003).CrossRef
Nagpal, P., Lindquist, N. C., Oh, S.-H., and Norris, D. J., Science 325, 594 (2009).CrossRef
Ozbay, E., Science 311, 189 (2006).CrossRef
Polman, A., Science 322, 868 (2008).CrossRef
Oulton, R. F., Sorger, V. J., Zentgraf, T., Ma, R. M., Gladden, C., Dai, L., Bartal, G., and Zhang, X., Nature 461, 629 (2009).CrossRef
Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., and Brongersma, M. L., Nature materials 9, 193 (2010).CrossRef
Linic, S., Christopher, P., and Ingram, D. B., Nature materials 10, 911 (2011).CrossRef
Berini, P. and De Leon, I., Nature photonics 6, 16 (2012).CrossRef
Lazar, S., Botton, G., and Zandbergen, H., Ultramicroscopy 106, 1091 (2006).CrossRef
Yamamoto, N., Araya, K., and de Abajo, F. G., Physical Review B 64, 205419 (2001).CrossRef
Ritchie, R., Physical Review 106, 874 (1957).CrossRef
Stern, E. and Ferrell, R., Physical Review 120, 130 (1960).CrossRef
Chen, C., Silcox, J., and Vincent, R., in Proceedings,... Annual Meeting, Electron Microscopy Society of America, Vol. 31, San Francisco Press, 1973, p. 284.Google Scholar
Pettit, R., Silcox, J., and Vincent, R., Physical Review B 11, 3116 (1975).CrossRef
Powell, C. and Swan, J., Physical Review 118, 640 (1960).CrossRef
Nelayah, J., Kociak, M., Stéphan, O., de Abajo, F. J. G., Tencé, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzán, L. M., and Colliex, C., Nature Physics 3, 348 (2007).CrossRef
Bosman, M., Keast, V. J., Watanabe, M., Maaroof, A. I., and Cortie, M. B., Nanotechnology 18, 165505 (2007).CrossRef
Myroshnychenko, V., Rodríguez-Fernández, J., Pastoriza-Santos, I., Funston, A. M., Novo, C., Mulvaney, P., Liz-Marzán, L. M., and de Abajo, F. J. G., Chemical Society Reviews 37, 1792 (2008).CrossRef
García de Abajo, F. J., Reviews of Modern Physics 82, 209 (2010).CrossRef
Frimmer, M., Coenen, T., and Koenderink, A. F., Physical review letters 108, 077404 (2012).CrossRef
Myroshnychenko, V., Nelayah, J., Adamo, G., Geuquet, N., Rodríguez-Fernández, J., Pastoriza-Santos, I., MacDonald, K. F., Henrard, L., Liz-Marzán, L. M., Zheludev, N. I., Kociak, M, and García de Abajo, F. J., Nano Lett 12, 4172 (2012).CrossRef
Koh, A. L., Fernández-Domínguez, A. I., McComb, D. W., Maier, S. A., and Yang, J. K., Nano Lett 11, 1323 (2011).CrossRef
Zhu, X., Zhang, Y., Zhang, J., Xu, J., Ma, Y., Li, Z., and Yu, D., Advanced Materials 2010).
Yang, ZHANG, Xinli, ZHU, Zhimin, LIAO, and Dapeng, Y., Journal of Chinese Electron Microscopy Society 28, 511 (2009).
Zhu, X., Ma, Y., Zhang, J., Xu, J., Wu, X., Zhang, Y., Han, X., Fu, Q., Liao, Z., and Chen, L., Physical review letters 105, 127402 (2010).CrossRef
Zhu, X., Zhang, J., Xu, J., and Yu, D., Nano Lett 11, 1117 (2011).CrossRef
Zhu, X. L., Zhang, J. S., Xu, J., Li, H., Wu, X. S., Liao, Z. M., Zhao, Q., and Yu, D. P., ACS Nano 5, 6546 (2011).CrossRef
Wagner, P., Hegner, M., Guentherodt, H.-J., and Semenza, G., Langmuir 11, 3867 (1995).CrossRef
Hegner, M., Wagner, P., and Semenza, G., Surface Science 291, 39 (1993).CrossRef
Graca, M., Turner, J., Marshall, M., and Granick, S., Journal of Applied Physics 102, 064909 (2007).CrossRef
Frey, W., Woods, C., and Chilkoti, A., Advanced Materials 12, 1515 (2000).3.0.CO;2-J>CrossRef
Atay, T., Song, J.-H., and Nurmikko, A. V., Nano Lett 4, 1627 (2004).CrossRef
Fromm, D. P., Sundaramurthy, A., Schuck, P. J., Kino, G., and Moerner, W., Nano Lett 4, 957 (2004).CrossRef
Kitson, S., Barnes, W. L., and Sambles, J., Physical review letters 77, 2670 (1996).CrossRef
Weeber, J.-C., Bouhelier, A., Colas des Francs, G., Markey, L., and Dereux, A., Nano Lett 7, 1352 (2007).CrossRef
Vesseur, E. J. R., García de Abajo, F. J., and Polman, A., Nano Lett 9, 3147 (2009).CrossRef
Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y., and Ebbesen, T. W., Nature 440, 508 (2006).CrossRef
Min, B., Ostby, E., Sorger, V., Ulin-Avila, E., Yang, L., Zhang, X., and Vahala, K., Nature 457, 455 (2009).CrossRef
Wiley, B. J., Lipomi, D. J., Bao, J., Capasso, F., and Whitesides, G. M., Nano Lett 8, 3023 (2008).CrossRef
Ditlbacher, H., Hohenau, A., Wagner, D., Kreibig, U., Rogers, M., Hofer, F., Aussenegg, F., and Krenn, J., Phys Rev Lett 95, 257403 (2005).CrossRef
Kuttge, M., 2009).
Sorger, V. J., Oulton, R. F., Yao, J., Bartal, G., and Zhang, X., Nano Lett 9, 3489 (2009).CrossRef
Hofmann, C. E., Vesseur, E. J. R., Sweatlock, L. A., Lezec, H. J., García de Abajo, F. J., Polman, A., and Atwater, H. A., Nano Lett 7, 3612 (2007).CrossRef
Kuttge, M., Vesseur, E., and Polman, A., Appl Phys Lett 94, 183104 (2009).CrossRef
Lu, T.-C., Chen, S.-W., Wu, T.-T., Tu, P.-M., Chen, C.-K., Chen, C.-H., Li, Z.-Y., Kuo, H.-C., and Wang, S.-C., Appl Phys Lett 97, 071114 (2010).CrossRef
Arafin, S., Bachmann, A., Kashani-Shirazi, K., and Amann, M.-C., Appl Phys Lett 95, 131120 (2009).CrossRef
Jewell, J. L., Harbison, J., Scherer, A., Lee, Y., and Florez, L., Quantum Electronics, IEEE Journal of 27, 1332 (1991).CrossRef
Miyazaki, H. T. and Kurokawa, Y., Physical review letters 96, 097401 (2006).CrossRef
Kuttge, M., Vesseur, E. J. R., Koenderink, A., Lezec, H., Atwater, H., de Abajo, F. G., and Polman, A., Physical Review B 79, 113405 (2009).CrossRef
Kurokawa, Y. and Miyazaki, H. T., Physical Review B 75, 035411 (2007).CrossRef
Cai, W., Sainidou, R., Xu, J., Polman, A., and García de Abajo, F. J., Nano Lett 9, 1176 (2009).CrossRef
Prodan, E., Radloff, C., Halas, N., and Nordlander, P., Science 302, 419 (2003).CrossRef
Foresi, J., Villeneuve, P. R., Ferrera, J., Thoen, E., Steinmeyer, G., Fan, S., Joannopoulos, J., Kimerling, L., Smith, H. I., and Ippen, E., Nature 390, 143 (1997).CrossRef
Vahala, K. J., Nature 424, 839 (2003).CrossRef
Lal, S., Link, S., and Halas, N. J., Nature photonics 1, 641 (2007).CrossRef
Kuttge, M., García de Abajo, F. J., and Polman, A., Nano Lett 10, 1537 (2009).CrossRef
Hao, F., Sonnefraud, Y., Dorpe, P. V., Maier, S. A., Halas, N. J., and Nordlander, P., Nano Lett 8, 3983 (2008).CrossRef
Jackson, J. D. and Fox, R. F., American Journal of Physics 67, 841 (1999).CrossRef
Luk'yanchuk, B., Zheludev, N. I., Maier, S. A., Halas, N. J., Nordlander, P., Giessen, H., and Chong, C. T., Nature materials 9, 707 (2010).CrossRef
Miroshnichenko, A. E., Flach, S., and Kivshar, Y. S., Reviews of Modern Physics 82, 2257 (2010).CrossRef
Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., and Ebbesen, T. W., Physical review letters 95, 046802 (2005).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-gtgjg Total loading time: 0.904 Render date: 2021-01-21T01:16:38.756Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

“Seeing” the Resonant SPP Modes Confined in Metal Nanocavity via Cathodoluminescne Spectroscopy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

“Seeing” the Resonant SPP Modes Confined in Metal Nanocavity via Cathodoluminescne Spectroscopy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

“Seeing” the Resonant SPP Modes Confined in Metal Nanocavity via Cathodoluminescne Spectroscopy
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *