Skip to main content Accessibility help
×
Home

Second and third order Nonlinear Optical Properties of Crystalline Inorganic / Organic Complexes.

Published online by Cambridge University Press:  21 February 2011

Henry O. Marcy
Affiliation:
Rockwell International Science Center, P.O. Box 1085, Thousand Oaks, CA 91358
Leslie. F. Warren
Affiliation:
Rockwell International Science Center, P.O. Box 1085, Thousand Oaks, CA 91358
Laura E. Davis
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Mark S. Webb
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Stephan P. Velsko
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Get access

Abstract

The properties for members of a new class of nonlinear optical (NLO) materials which stoichiometrically incorporate organic and inorganic constituents into a single crystalline lattice are reported. Recent results for our synthetic, crystal growth, and optical studies suggest that a number of these relatively transparent “semiorganic” compounds have significant second and/or third order NLO responses and often display favorable crystal growth morphologies.

The prototype material of this class, zinc tris(thiourea) sulfate, or ZTS, has a UV cutoff at about 325 nm, can be readily grown to cm3 sizes, and has been shown to be a highly efficient Type II frequency doubler for 1064 nm Nd:YAG laser radiation. ZTS also possesses a moderate third order nonlinear optical response (ca. 0.1 × CS2) which occurs on at least a picosecond time scale as determined by degenerate four-wave mixing (DFWM) experiments at 532 nm.

Refractive index, second harmonic generation, and DFWM data for a number of these new compounds are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Nonlinear Optical Properties of Organic and Polymeric Materials, edited by Williams, D. J., ACS Symposium Series, 233, (American Chemical Society, Washington, DC, 1982).Google Scholar
2. Nonlinear Optical Properties of Organic Materials and Crystals, edited by Chemla, D. S. and Zyss, J., Vol. 1 and 2, (Academic Press, New York, 1987).Google Scholar
3. Materials for Nonlinear Optics – Chemical Perspectives, edited by Marder, S. R., Sohn, J. E. and Stucky, G. D., ACS Symposium Series, 455, (American Chemical Society, Washington, DC, 1990).Google Scholar
4. Prasad, P. N. and Reinhardt, B. A., Chem. Mater. 2, 660669 (1990).CrossRefGoogle Scholar
5. Newman, P. R., Warren, L. F., Cunningham, P. H., Chang, T. Y., Cooper, D. E., Burdge, G. L., Polak-Dingels, P. and Lowe-Ma, C. K., in Advanced Organic Solid State Materials, edited by Chiang, L. Y., Chaikin, P. M. and Cowan, D. O., Materials Research Society Symposium Proceedings, 173, (Materials Research Society, Pittsburgh, PA, Boston, MA, 1989) p. 557–561.CrossRefGoogle Scholar
6. Warren, L. F., in Electronic Materials – Our Future, edited by Allred, R. E., Martinez, R. J. and Wischmann, K. B., Proceedings of the 4th International SAMPE Electronics Conference, 4, (Society for the Advancement of Material and Process Engineering, Covina, CA, 1990) p. 388–396.Google Scholar
7. Velsko, S. P., in Materials for Nonlinear Optics – Chemical Perspectives, edited by Marder, S. R., Sohn, J. E. and Stucky, G. D., ACS Symposium Series, 455, (American Chemical Society, Washington, DC, 1990).Google Scholar
8. Marder, S. R., Perry, J. W. and Schaefer, W. P., Science 245, 626628 (1989).CrossRefGoogle Scholar
9. Marcy, H. O., Warren, L. F., Webb, M. S., Ebbers, C. A., Velsko, S. P., Kennedy, G. C. and Catella, C. C., Appl. Opt. (in press).Google Scholar
10. Haussuhl, S., Bohaty, L. and Grazel, U., Zeit. Krist. 167, 307309 (1984).CrossRefGoogle Scholar
11. Xing, G., Jiang, M., Shao, Z. and Xu, D., Chinese Phys. Lasers 14, 357364 (1987).Google Scholar
12. Wang, W. S., Sutter, K., Bosshard, C., Pan, Z., Arend, H., Gunter, P., Chapuis, G. and Nicolo, F., Japn. J. Appl. Phys. 21, 11381141 (1988).CrossRefGoogle Scholar
13. Tao, X., Jiang, M., Xu, D. and Shao, Z., Tongbao, Kexue (Foreign Lang. Ed.) 33, 651654 (1988).Google Scholar
14. Zhang, N., Jiang, M., Yuan, D., Xu, D. and Tao, X., Chinese Phys. Lett. 6, 280283 (1989).CrossRefGoogle Scholar
15. Andreetti, G. D., Cavalca, L. and Musatti, A., Acta Cryst. B24, 683690 (1968).CrossRefGoogle Scholar
16. Velsko, S. P., Opt. Eng. 28, 7684 (1989).CrossRefGoogle Scholar
17. Eimerl, D., IEEE J. Quantum Elect. OE–23, 575592 (1987).CrossRefGoogle Scholar
18. Zemike, F. and Midwinter, J. E., in Applied Nonlinear Optics, (John Wiley and Sons, New York, 1973).Google Scholar
19. Zyss, J., Nicoud, J. F. and Coquillay, M., Appl. Phys. Lett. 81, 41604167 (1984).Google Scholar
20. Klug, H. P., Alexander, L. E. and Sumner, G. G., Acta Cryst. 11, 4146 (1958).CrossRefGoogle Scholar
21. Iwasaki, H. and Hagihara, H., Acta Cryst. B28, 507513 (1972).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 4 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-2nq4t Total loading time: 0.219 Render date: 2021-01-16T10:22:02.491Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Jan 16 2021 10:01:08 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Second and third order Nonlinear Optical Properties of Crystalline Inorganic / Organic Complexes.
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Second and third order Nonlinear Optical Properties of Crystalline Inorganic / Organic Complexes.
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Second and third order Nonlinear Optical Properties of Crystalline Inorganic / Organic Complexes.
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *