Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-11T10:10:06.238Z Has data issue: false hasContentIssue false

Scaling of Transport Properties of Reservoir Material at Low Saturations of a Wetting Phase

Published online by Cambridge University Press:  03 September 2012

Y. Carolina Araujo
Affiliation:
Intevep, S. A., Research and Technological Support Center of Petróleos de Venezuela, S. A., P.O. Box 76343, Caracas, 1070–A, Venezuela
Pedro G. Toledo
Affiliation:
Intevep, S. A., Research and Technological Support Center of Petróleos de Venezuela, S. A., P.O. Box 76343, Caracas, 1070–A, Venezuela
Hada Y. Gonzalez
Affiliation:
Intevep, S. A., Research and Technological Support Center of Petróleos de Venezuela, S. A., P.O. Box 76343, Caracas, 1070–A, Venezuela
Get access

Abstract

Transport properties of natural porous media have been observed to obey scaling laws in the wetting phase saturation. Previous work relates power-law behavior at low wetting phase saturations, i.e., at high capillary pressures, to the thin-film physics of the wetting phase and the fractal character of the pore space of porous media. Here, we present recent combined porousplate capillary pressure and electrical conductivity data of Berea sandstone at low saturations that lend support to the scaling laws. Power law is interpreted in terms of the exponent m in the relation of surface forces and film thickness and the fractal dimension D of the interface between pore space and solid matrix. Simple determination of D from capillary pressure and m from electrical conductivity data can be used to rapidly determine wetting phase relative permeability and capillary dispersion coefficient at low wetting phase saturations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davis, H. T., Europhys. Lett. 9, 629 (1989).Google Scholar
2. Novy, R. A., Toledo, P. G., Davis, H. T., Scriven, L. E., Chem. Eng. Sci. 44, 1785 (1989).Google Scholar
3. Toledo, P. G., Novy, R. A., Davis, H. T., Scriven, L. E., Soil Sci. Soc. Am. J. 54, 673 (1990).Google Scholar
4. Davis, H. T., Novy, R. A., Scriven, L. E., Toledo, P. G., J. Phys.: Condensed Matter 2, SA457 (1990).Google Scholar
5. Toledo, P. G., Davis, H. T., Scriven, L. E., Physica A 185, 228 (1992).Google Scholar
6. Toledo, P. G., Davis, H. T., Scriven, L. E., Transport in Porous Media 10, 57 (1993).Google Scholar
7. Toledo, P. G., Novy, R. A., Davis, H. T., Scriven, L. E., SPE Advanced Technology Series 1, 136 (1994).Google Scholar
8. Nimmo, J. R., Rubin, J., Akstin, K. C., Water Resour. Res. 23, 124 (1987).Google Scholar
9. Nimmo, J. R. and Akstin, K. C., Soil Sci. Soc. Am. J. 52, 303 (1988).Google Scholar
10. Ward, J. S. and Morrow, N. R., SPEFE 2, 345 (1987).Google Scholar
11. Knight, R. and Endres, A., SPWLA 30th Annual Symposium, Denver, June 11-14, 1989.Google Scholar
12. Melrose, J. C., SPERE 2, 913 (1987).Google Scholar
13. Melrose, J. C., Langmuir 3, 661 (1987).Google Scholar
14. Melrose, J. C., SPERE 5, 95 (1990).Google Scholar
15. Knight, R. and Endres, A., SPWLA 32nd Annual Symposium, Houston, June 16-19, 1991.Google Scholar
16. Gennes, P. G. de, in Physics of Disordered Materials, edited by Adler, et al. (Plenum Press, New York, 1985) pp. 227241.Google Scholar
17. Wong, P.-z., in Physics and Chemistry of Porous Media II. AIP Conference Proceedings 154, edited by Banavar, J. R. (AIP, New York, 1987) pp. 304318.Google Scholar
18. Mohanty, K. K., Davis, H. T., Scriven, L. E., SPERE 2, 113 (1987).Google Scholar
19. Knight, R. and Nur, A., Geophysics 52, 644 (1987).Google Scholar
20. Katz, A. J. and Thompson, A. H., Phys. Rev. Lett. 54, 1325 (1985).Google Scholar
21. Archie, G. E., Trans. A.I.M.E. 146, 54 (191942).Google Scholar