Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-26T21:46:13.085Z Has data issue: false hasContentIssue false

Salt-Occluded Zeolite Waste Forms: Crystal Structures and Transformability

Published online by Cambridge University Press:  03 September 2012

J. W. Richardson Jr.*
Affiliation:
Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, IL 60439, USA
Get access

Abstract

Neutron diffraction studies of salt-occluded zeolite and zeolite/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6–8 Å diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr, Ba, Y chloride salts, with compositions representative of anticipated waste systems. Samples prepared using zeolite 4A (which contains exclusively sodium cations) as starting material are observed to transform to sodalite, a denser alumi-nosilicate framework structure, while those prepared using zeolite 5A (sodium and calcium ions) more readily retain the zeolite-A structure. Because the sodalite framework pores are much smaller than those of zeolite-A, clusters are smaller and more rigorously confined, with a correspondingly lower capacity for waste containment. Details of the sodalite structures resulting from transformation of zeolite-A depend upon the precise composition of the original mixture. The enhanced resistance of salt-occluded zeolites prepared from zeolite 5A to sodalite transformation is thought to be related to differences in the complex chloride clusters present in these zeolite mixtures. Data relating processing conditions to resulting zeolite composition and structure can be used in the selection of processing parameters which lead to optimal waste forms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Adams, J. M. and Haselden, D. A., J. Solid State Chem. 47, 123 (1983).Google Scholar
2. Adams, J. M. and Haselden, D. A., J. Solid State Chem. 51, 83 (1984).Google Scholar
3. Richardson, J. W. Jr., Smith, J. V. and Pluth, J. J., J. Phys. Chem. 93, 8212 (1989).Google Scholar
4. Richardson, J. W. Jr. and Vogt, E. T. C., Zeolites 12, 13 (1992).Google Scholar
5. Richardson, J.W. Jr., Lewis, M. A. and McCart, B. R., Proc. 10th Int. Zeol. Conf. 741 (1994).Google Scholar
6. Lewis, M. A., Smith, L. J. and Fischer, D. F., Am. Ceram. Soc. 11, 2826 (1993).Google Scholar
7. Lewis, M. A., Fischer, D. F. and Murphy, C. D., Mat. Reser. Soc. Proc. 333, 277 (1994).Google Scholar
8. Lewis, M. A., Fischer, D. F. and Murphy, C. D. in Environmental and Waste Management Issues in the Ceramic Industry II, 277 (1994).Google Scholar
9. Jorgensen, J. D., Faber, J. Jr., Carpenter, J. M., Crawford, R. K., Hauman, J. R., Hitter-man, R. L., Kleb, R., Ostrowski, G.E., Rotella, F.J. and Worlton, T.G., J. Appl. Cryst. 21, 321 (1989).Google Scholar
10. Rietveld, H. M., J. Appl. Cryst. 2, 65 (1969).Google Scholar
11. Larson, A. C. and Von Dreele, R. B., GSAS, General Structure Analysis System. Los Alamos National Laboratory Report LAUR86–748 (1986).Google Scholar
12. Reed, T. B. and Breck, D. W., J. Am. Chem. Soc. 78 (1956) 5972.Google Scholar
13. Gramlich, V. and Meier, W. M., Z. Krist. 133, 134 (1971).Google Scholar
14. Pauling, L., Z. Krist. 74, 213 (1930).Google Scholar
15. Pluth, J. J. and Smith, J. V., J. Am. Chem. Soc. 102, 4704 (1980).Google Scholar
16. Pluth, J. J. and Smith, J. V., J. Phys. Chem. 83, 741 (1979).Google Scholar
17. Pluth, J. J. and Smith, J. V., J. Am. Chem. Soc. 105, 2621 (1983).Google Scholar
18. Pluth, J. J. and Smith, J. V., J. Am. Chem. Soc. 104, 6977 (1982).Google Scholar
19. Heo, N. H. and Seff, K., J. Am. Chem. Soc. 109, 7986 (1987).Google Scholar
20. Newsam, J. M., Jarman, R. H. and Jacobson, A. J., J. Solid State Chem. 58, 325 (1985).Google Scholar