Skip to main content Accessibility help
×
Home

Roles of Impurities and Implantation Depth on He+- Cavity Shape in Silicon

Published online by Cambridge University Press:  01 February 2011

Gabrielle Regula
Affiliation:
Laboratoire TECSEN CNRS UMR-6122, Aix-Marseille III, Service 151, Marseille, F-13397
Rachid El Bouayadi
Affiliation:
Laboratoire TECSEN CNRS UMR-6122, Aix-Marseille III, Service 151, Marseille, F-13397
Maryse Lancin
Affiliation:
Laboratoire TECSEN CNRS UMR-6122, Aix-Marseille III, Service 151, Marseille, F-13397
Esidor Ntsoenzok
Affiliation:
Laboratoire TECSEN CNRS UMR-6122, Aix-Marseille III, Service 151, Marseille, F-13397
Bernard Pichaud
Affiliation:
Laboratoire TECSEN CNRS UMR-6122, Aix-Marseille III, Service 151, Marseille, F-13397
Marie-Odile Ruault
Affiliation:
Laboratoire TECSEN CNRS UMR-6122, Aix-Marseille III, Service 151, Marseille, F-13397
Get access

Abstract

Silicon samples were implanted with He+ ions at energies varying from 10keV to 1.55MeV using doses ranging from 1.45×1016 cm-2 to 5×1016cm-2 to obtain similar He concentration at each projection range (Rp). In few samples, gold, platinum, nickel or silver was introduced prior to He+ implantation by diffusion at temperatures ranging from 870°C to 1050°C. All samples were annealed in the 400°C–1050°C temperature range to determine the equilibrium stage of the growth of the cavity. The cavity characteristics (distribution, shape and size) were studied by cross section transmission electron microscopy (XTEM). Their morphology demonstrates the validity of the chemisorption hypothesis when they grow in silicon intentionally contaminated by metal. A consequence of the surface proximity on the cavity characteristics was verified and allows stepping forward two regimes of cavity growth: one, very fast, taking place in a He-free environment and another one, slower, occurring in a He-rich atmosphere.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Raineri, V., J. Appl. Phys. 78 3727 (1995)CrossRefGoogle Scholar
2 Eaglesham, D. J., White, A. E., Feldman, L. C., Moriya, N., Jacobson, D. C., Phys. Rev. Letters, 70, 1643 (1993)CrossRefGoogle Scholar
3 Myers, S. M., Petersen, G. A., Seager, C. H., J. Appl. Phys. 80 7 (1996)Google Scholar
4 Grisolia, J., Claverie, A., Ben Assayag, G., Godey, S., Ntsoenzok, E., Labhom, F., Veen, A. Van, J. Appl. Phys. 91 (2002)CrossRefGoogle Scholar
5 Jung, P., Nucl. Instrum. Methods Phys. Res. B 91, 362 (1994)CrossRefGoogle Scholar
6 Atalo, M., Puska, M. J., Nieminen, R. M., Phys. Rev. B. 46 12 806 (1992)Google Scholar
7 Corni, F., Nobili, C., Ottaviani, G., Tonini, R., Calzolari, G., Cerofolini, G. F., Queirolo, G., Phys. Rev. B56 7331 (1997)CrossRefGoogle Scholar
8 Estreicher, S. K., Weber, J., Derecskei-Kovacs, A., Marynick, D.S., Phys. Rev. B 55 (1997)CrossRefGoogle Scholar
9 Raineri, V., Coffa, S., Szilagyi, E., Gyulai, J., Rimini, E, Phys. Rev. B (2000)Google Scholar
10 Corni, F., Calzolari, G., Frabboni, S., Nobili, C., Ottaviani, G., Tonini, R., J. Appl. Phys. 85 1401 (1999)CrossRefGoogle Scholar
11 Veen, A. Van, Schut, H., Hakvoort, R. A., Fedorov, A., and Westerduin, K. T., Mater. Res. Soc. Symp. Proc. 373, 499 (1995)CrossRefGoogle Scholar
12 Evans, J. H., Nuclear Instruments and methods in Physics Research B 196 125134 (2002)CrossRefGoogle Scholar
13 Schroeder, H., Fichtner, P.F.P., Trinkaus, H., “Fundamental Aspects of Inert Gases in Solids” éd. Donnelly, S.E. et Evans, J.H., plenum press, New York, vol 279 (1991)CrossRefGoogle Scholar
14 Vishnyakov, V. M., Donnelly, S.E., Carter, G., Birtcher, R.C., Haworth, L and Terry, J, Workshop on semiconductor defect engineering, Orléans, France, (2002)Google Scholar
15 Godey, S., Ph. D thesis, Université d'Orléans (1999)Google Scholar
16 Roqueta, F., Grob, A., Grob, J.J., Jérisian, R., Stoquert, J.P., Ventura, L., Nucl. Inst. And Meth. In Phys. Res. B147 298303 (1999)CrossRefGoogle Scholar
17 Grisolia, J., Ph. D thesis, Université Paul Sabatier, Toulouse France (2000)Google Scholar
18 Bouayadi, R. El, Ph.D thesis, Université Aix Marseille, Marseille, France (2003)Google Scholar
19 Evans, J.H., Veen, A. Van, Griffioen, C.C., Nuclear Instruments and methods in Physics Research B 28 360363 (1987)CrossRefGoogle Scholar
20 Regula, G., Bouayadi, R. El, Pichaud, B., Godey, S., Delamare, R., Ntsoenzok, E., Veen, A. Van, Mat. Res. Soc. Symp. Proc. Vol. 719 (2002)CrossRefGoogle Scholar
21 Myers, S. M., Follstaedt, D. M., J. Appl. Phys. 79 3 (1996)CrossRefGoogle Scholar
22 Bouayadi, R. El, Regula, G., Pichaud, B., Lancin, M., Dubois, C., Ntoenzok, E., Phys. Stat. Sol.(b), 222, 319 (2000)3.0.CO;2-Q>CrossRefGoogle Scholar
23 Follstaedt, M., Myers, S.M., Petersen, G.A., and Medernach, J.W., J. Electron. Mater. 25, 157 (1996)CrossRefGoogle Scholar
24 , Wong-leung, Nygren, E. and Williams, J.S., Appl. Phys. Lett. 67, 416 (1995)CrossRefGoogle Scholar
25 Schiettekatte, F., Wintgens, C., Roorda, S., Appl. Phys. Lett., 74, 13, 1857 (1999)CrossRefGoogle Scholar
26 Kern, R., Müller, P., J. Cryst. Growth, 146, 193 (1995)CrossRefGoogle Scholar
27 Grisolia, J., Claverie, A., Assayag, G. Ben, Godey, S., Ntsoenzok, E., Labhom, F., Veen, A. Van, J. Appl. Phys. 91 (2002)CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 5 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-fv2z2 Total loading time: 0.212 Render date: 2021-01-22T23:32:24.914Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Roles of Impurities and Implantation Depth on He+- Cavity Shape in Silicon
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Roles of Impurities and Implantation Depth on He+- Cavity Shape in Silicon
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Roles of Impurities and Implantation Depth on He+- Cavity Shape in Silicon
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *