Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-25T10:06:42.275Z Has data issue: false hasContentIssue false

Role of Localized Quantum Well Excitons in InGaN Quantum Well Structure Correlated with Microstructural Analysis

Published online by Cambridge University Press:  17 March 2011

S. F. Chichibu
Affiliation:
Institue of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
T. Sota
Affiliation:
Department of Electrical, Electronics, and Computer Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
S. Nakamura
Affiliation:
Department of Research and Development, Nichia Chemical Industries Ltd., 491 Oka, Kaminaka, Anan, Tokushima 774-8601, Japan
Get access

Abstract

InxGa1−xN multiple-quantum-well laser diode structure, which lased at 405 nm, was shown to have atomically-flat interfaces between each layer. Nanometer-probe compositional analysis showed that InN mole fraction, x, in the wells and barriers are approximately 6 % and 2 %, respectively, which agreed with the result obtained from high-resolution x-ray diffraction measurement. The Stokes-like shift (SS) at 300 K was 49 meV, being approximately 65 % of the luminescence linewidth. The localization depth, E0, of qunatum-well (QW) excitons was estimated to be 35 meV at 300 K though the compositional fluctuation in the well was as small as 1 % or less (detection limit) within adjacent 20-30 nm lateral length scale. Since the well thickness fluctuation is insufficient to reproduce SS or E0, effective bandgap inhomogeneity is attributed to be due to large bandgap bowing in InGaN. The spontaneous emission was thus assigned as being due to the recombination of QW excitons weakly localized in exponential tail-type potential minima in the QW. The size of localization is smaller than the quantum-disk [M. Sugawara, Phys. Rev. B 51, 10743 (1995)]-size. Such small bandgap inhomogeneity can be leveled by injecting high density carriers under lasing conditions, which can explain the general experimental finding that the quantum efficiency decreases with increasing carrier density in InGaN QW devices due to free carrier trapping into threading dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S. and Fasol, G., The Blue Laser Diode, (Springer, Berlin, 1997).Google Scholar
2 Akasaki, I. and Amano, H., Jpn. J. Appl. Phys. 36, 5393 (1997).Google Scholar
3 Mukai, T., Yamada, M., and Nakamura, S., Jpn. J. Appl. Phys. 38, 3976 (1999).Google Scholar
4 Ponce, F. and Bour, D., Nature 386, 351 (1997).Google Scholar
5 Bernardini, F. and Fiorentini, V., Phys. Rev. B 57, R9427 (1998); Phys. Stat. Sol. (b) 216, 391 (1999).Google Scholar
6 Miller, D. A., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H. and Burrus, C. A., Phys. Rev. Lett. 53, 2173 (1984); Phys. Rev. B 32, 1043 (1985).Google Scholar
7 Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
8 Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L382 (1997).Google Scholar
9 Chichibu, S., Abare, A., Mack, M., Minsky, M., Deguchi, T., Cohen, D., Kozodoy, P., Fleischer, S., Keller, S., Speck, J., Bowers, J. E., Hu, E., Mishra, U. K., Coldren, L. A., DenBaars, S. P., Wada, K., Sota, T., and Nakamura, S., Mat. Sci. Eng. B 59, 298 (1999); S. F. Chichibu, T. Sota, K. Wada, S. P. DenBaars, and S. Nakamura, MRS Internet J. Nitride Semicond. Res. 4S1, G2.7 (1999).Google Scholar
10 Chichibu, S., Wada, K., and Nakamura, S., Appl. Phys. Lett. 71, 2346 (1997).Google Scholar
11 Sugawara, M., Phys. Rev. B 51, 10743 (1995).Google Scholar
12 Shan, W., Walukiewicz, W., Haller, E., Little, B., Song, J. J., McCluskey, M., Johnson, N., Feng, Z., Schurman, M., and Stall, R., J. Appl. Phys. 84, 4452 (1998).Google Scholar
13 Narukawa, Y., Kawakami, Y., Funato, M., Fujita, Sz., Fujita, Sg., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
14 Kisielowski, C., Liliental-Weber, Z., and Nakamura, S., Jpn. J. Appl. Phys. 36, 6932 (1997).Google Scholar
15 O'Donnell, K. P., Martin, R. W., and Middleton, P. G., Phys. Rev. Lett. 82, 237 (1999); R. W. Martin, P. G. Middleton, K. P. O'Donnell, and W. Van der Stricht, Appl. Phys. Lett. 74, 263 (1999).Google Scholar
16 Bellaiche, L., Mattila, T., Wang, L.-W., Wei, S.-H., and Zunger, A., Appl. Phys. Lett. 74, 1842 (1999).Google Scholar
17 Bastard, G., Mendez, E. E., Chang, L. L. and Esaki, L.: Phys. Rev. B 26, 1974 (1982).Google Scholar
18 Takeuchi, T., Takeuchi, H., Sota, S., Sakai, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L177 (1997).Google Scholar
19 Mcluskey, M., Walle, C. Van de, Master, C., Romano, L., and Johnson, N., Appl. Phys. Lett. 72, 2725 (1998).Google Scholar
20 Wetzel, C., Takeuchi, T., Yamaguchi, S., Kato, H., Amano, H., and Akasaki, I., Appl. Phys. Lett. 73, 1994 (1998).Google Scholar
21 Wetzel, C., Takeuchi, T., Amano, H., and Akasaki, I., J. Appl. Phys. 85, 3786 (1999).Google Scholar
22 Chichibu, S. F., Azuhata, T., Sota, T., Mukai, T., and Nakamura, S., J. Appl. Phys. 88, 5153 (2000); S. F. Chichibu, T. Sota, K. Wada, O. Brandt, K. H. Ploog, S. P. DenBaars, and S. Nakamura, Phys. Stat. Sol. A, (2001) in press.Google Scholar
23 Yang, F., Wilkinson, M., Austin, E., and O'Donnell, K., Phys. Rev. Lett. 70, 323 (1993).Google Scholar
24 Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 70, 2822 (1997).Google Scholar
25 Holst, J., Hoffmann, A., Rudloff, D., Bertram, F., Riemann, T., Christen, J., Frey, T., As, D., Schikora, D., and Lischka, K., Appl. Phys. Lett. 76, 2832 (2000).Google Scholar