Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-21T09:17:53.547Z Has data issue: false hasContentIssue false

Reinforcement Mechanisms in Polymer Nanotube Composites: Simulated Non-Bonded and Cross-Linked Systems

Published online by Cambridge University Press:  15 March 2011

S. J. V. Frankland
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC
A. Caglar
Affiliation:
Department of Applied Mathematics, Division of Scientific Computing and Numerical Simulation, University of Bonn, Germany
D. W. Brenner
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC
M. Griebel
Affiliation:
Department of Applied Mathematics, Division of Scientific Computing and Numerical Simulation, University of Bonn, Germany
Get access

Abstract

A summary of three simulations related to the issue of load transfer in carbon nanotube/polymer composites is given. Each simulation considers a (10,10) nanotube in a polyethylene matrix modeled with either a united-atom or fully-atomic polyethylene representation. The first simulation uses molecular dynamics to model a 100 nm nanotube in polyethylene in which the nanotube and matrix interact through weak non-bonded interactions. No permanent stress transfer is observed for this system. The second simulation estimates the shear yield strength for the nanotube in each of the model polyethylene matrices. The third simulation addresses a chemically functionalized nanotube in which there are cross-links between the nanotube and matrix. The results indicate that the cross-linked system has an enhanced shear yield strength of one to two orders of magnitude larger than the non-bonded composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Calvert, P., Nature 399, 210 (1999).Google Scholar
2. Schadler, L. S., Giannaris, S. C., and Ajayan, P. M., Appl. Phys. Lett. 73, 3842 (1998).Google Scholar
3. Gong, X., Liu, J., Baskaran, S., Voise, R. D., and Young, J. S., Chem. Mater. 12, 1049 (2000).Google Scholar
4. Haggenmueller, R., Gommans, H. H., Rinzler, A. G., Fischer, J. E., and Winey, K. I., Chem. Phys. Lett. 330, 219 (2000).Google Scholar
5. Qian, D., Dickey, E. C., Andrews, R., and Rantell, T., Appl. Phys. Lett. 76, 2868 (2000).Google Scholar
6. Shaffer, M. S. P. and Windle, A. H., Adv. Materials 11, 937 (1999).Google Scholar
7. Wagner, H. D., Lourie, O., Feldman, Y., and Tenne, R., Appl. Phys. Lett. 72, 188 (1998).Google Scholar
8. Lourie, O. and Wagner, H. D., Appl. Phys. Lett. 73, 3527 (1998).Google Scholar
9. Ajayan, P. M., Schadler, L. S., Giannaris, C., and Rubio, A. Adv. Materials 12, 750 (2000).Google Scholar
10. Chapelle, M. Lamy de la, Stephan, C., Nguyen, T. P., Lefrant, S., Journet, C., Bernier, P., Munoz, E., Benito, A., Maser, W. K., Martinez, M. T., Fuente, G. D. de la, Guillard, T., Flamant, G., Alvarez, L., and Laplaze, D., Synthetic Metals 103, 2510 (1999).Google Scholar
11. Jia, Z., Wang, Z., Xu, C., Liang, J., Wei, B., Wu, D., and Zhu, S., Mat. Sci. Eng. A 271, 395 (1999).Google Scholar
12. Chen, J., Hamon, M. A., Hu, H., Chen, Y., Rao, A. M., Eklund, P. C., and Haddon, R. C., Science 282, 95 (1998).Google Scholar
13. Michelson, E. T., Chiang, I. W., Zimmerman, J. L., Boul, P. J., Lozano, J., Liu, J., Smalley, R. E., Hauge, R. H., and Margrave, J. L., J. Phys. Chem. B 103, 4318 (1999).Google Scholar
14. Boul, P. J., Liu, J., Michelson, E. T., Huffman, C. B., Ericson, L. M., Chiang, I. W., Smith, K. A., Colbert, D. T., Hauge, R. H., Margrave, J. L., and Smalley, R. E., Chem. Phys. Lett. 310, 367 (1999).Google Scholar
15. Garg, A. and Sinnott, S. B., Chem. Phys. Lett. 295, 273 (1998)Google Scholar
16. Frankland, S. J. V. and Brenner, D. W. in Amorphous and Nanostructured Carbon, edited by Sullivan, J. P., Robertson, J., Zhou, O., Allen, T. B., and Coll, B. F. (Mat. Res. Soc. Symp. Proc., 593, Warrendale, PA, 1999) pp. 199.Google Scholar
17. Forester, T. R. and Smith, W., The DL_POLY User Manual Version 2.11, CCLRC, Daresbury Laboratory, Daresbury, 1998.Google Scholar
18. Brenner, D. W., Phys. Rev. B 42, 9458 (1990). A slightly modified form is used for the present calculations. (D. W. Brenner, O. A. Shenderova, S. B. Sinnott, and J. A. Harrison, unpublished).Google Scholar
19. Vitek, V. and Egami, T., Physica Status Solidi B 144, 145 (1987).Google Scholar
20. Caglar, A. and Griebel, M. in Molecular Dynamics on Parallel Computers, World Scientific, Singapore, 2000.Google Scholar
21. Yu, M. F., Files, B. S., Arepalli, S., and Ruoff, R. S., Phys.Rev. Lett. 84, 5552 (2000).Google Scholar
22. Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., and Ruoff, R. S., Science 287, 637 (2000).Google Scholar